Citation: Hui Wang, Abdelkader Labidi, Menghan Ren, Feroz Shaik, Chuanyi Wang. Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites[J]. Acta Physico-Chimica Sinica, ;2025, 41(5): 100039. doi: 10.1016/j.actphy.2024.100039 shu

Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites

  • Corresponding author: Chuanyi Wang, wangchuanyi@sust.edu.cn
  • Received Date: 6 November 2024
    Revised Date: 3 December 2024
    Accepted Date: 6 December 2024

    Fund Project: the National Natural Science Foundation of China 52161145409the National Natural Science Foundation of China 21976116SAFEA of China ("Belt and Road" Innovative Talent Exchange Foreign Expert Project) 2023041004LHigh-end Foreign Expert Project G2023041021L

  • Photocatalytic nitric oxide (NO) conversion technology has the characteristics of high efficiency, economy, and environment friendly to remove NO using g-C3N4. Introducing new adsorption sites on the surface of g-C3N4 through microstructure control can alter the structure-activity relationship between g-C3N4 and gas molecules, thereby improving photocatalytic NO conversion activity and inhibiting NO2 generation. However, few review articles have focused on the microscopic effects of microstructural changes in g-C3N4 based materials on the adsorption and activation of NO and O2. This has important guiding significance for material design work in the field of NO conversion and strategies to fundamentally improve NO conversion activity and selectivity. Therefore, our work systematically summarizes the strategy of introducing adsorption and activation sites through microstructure control, and emphasizes the role of these sites in the photocatalytic NO conversion process. The aim is to clarify the influence of adsorption and activation sites on adsorption behavior and the correlation between these sites and reaction paths. Finally, the development trend and future prospects of increasing the level of g-C3N4 adsorption and activation in the field of photocatalytic NO conversion are introduced, which is expected to provide an important reference for the development and practical application of g-C3N4-based photocatalytic materials.
  • 加载中
    1. [1]

      Chen, B. H.; Hong, C. J.; Kan, H. D. Toxicology 2004, 198, 291. doi: 10.1016/j.tox.2004.02.005  doi: 10.1016/j.tox.2004.02.005

    2. [2]

      Ma, J. Z.; Wang, C. X.; He, H. Appl. Catal. B-Environ. 2016, 184, 28. doi: 10.1016/j.apcatb.2015.11.013  doi: 10.1016/j.apcatb.2015.11.013

    3. [3]

      Tang, X. L.; Gao, F. Y.; Xiang, Y.; Yi, H. H.; Zhao, S. Z.; Liu, X.; Li, Y. N. Ind. Eng. Chem. Res. 2015, 54, 9116. doi: 10.1021/acs.iecr.5b02062  doi: 10.1021/acs.iecr.5b02062

    4. [4]

      Roy, S.; Hegde, M. S.; Madras, G. Appl. Energy 2009, 86, 2283. doi: 10.1016/j.apenergy.2009.03.022  doi: 10.1016/j.apenergy.2009.03.022

    5. [5]

      Yang, W. F.; Hsing, H. J.; Yang, Y. C.; Shyng, J. Y. J. Hazard. Mater. 2007, 148, 653. doi: 10.1016/j.jhazmat.2007.03.023  doi: 10.1016/j.jhazmat.2007.03.023

    6. [6]

      Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. H.; et al. Science 2015, 347, 970. doi: 10.1126/science.aaa3145  doi: 10.1126/science.aaa3145

    7. [7]

      Su, C. Y.; Ran, X.; Hu, J. L.; Shao, C. L. Environ. Sci. Technol. 2013, 47, 11562. doi: 10.1021/es4025595  doi: 10.1021/es4025595

    8. [8]

      Ma, L.; Li, J. H.; Ke, R.; Fu, L. X. J. Phys. Chem. C 2011, 115, 7603. doi: 10.1021/jp200488p  doi: 10.1021/jp200488p

    9. [9]

      Yu, J. J.; Jiang, Z.; Zhu, L.; Hao, Z. P.; Xu, Z. P. J. Phys. Chem. B 2006, 110, 4291. doi: 10.1021/jp056473f  doi: 10.1021/jp056473f

    10. [10]

      Li, Y. H.; Lv, K. L.; Ho, W. K.; Zhao, Z. W.; Huang, Y. Chin. J. Catal. 2017, 38, 321. doi: 10.1016/S1872-2067(16)62573-1  doi: 10.1016/S1872-2067(16)62573-1

    11. [11]

      Lasek, J.; Yu, Y. H.; Wu, J. C.S. J. Photochem. Photobiol. C-Photochem. Rev. 2013, 14, 29. doi: 10.1016/j.jphotochemrev.2012.08.002  doi: 10.1016/j.jphotochemrev.2012.08.002

    12. [12]

      Ding, X.; Ho, W. K.; Shang, J.; Zhang, L. Z. Appl. Catal. B-Environ. 2016, 182, 316. doi: 10.1016/j.apcatb.2015.09.046  doi: 10.1016/j.apcatb.2015.09.046

    13. [13]

      Wang, Z. Y.; Huang, Y.; Ho, W. K.; Cao, J. J.; Shen, Z. X.; Lee, S. C. Appl. Catal. B-Environ. 2016, 199, 123. doi: 10.1016/j.apcatb.2016.06.027  doi: 10.1016/j.apcatb.2016.06.027

    14. [14]

      Spasiano, D.; Marotta, R.; Malato, S.; Fernandez-Ibañez, P.; Di Somma, I. Appl. Catal. B-Environ. 2015, 170, 90. doi: 10.1016/j.apcatb.2014.12.050  doi: 10.1016/j.apcatb.2014.12.050

    15. [15]

      Zhang, D. Q.; Wen, M. C.; Zhang, S. S.; Liu, P. J.; Zhu, W.; Li, G. S.; Li, H. X. Appl. Catal. B-Environ. 2014, 147, 610. doi: 10.1016/j.apcatb.2013.09.042  doi: 10.1016/j.apcatb.2013.09.042

    16. [16]

      Liu, Q.; Zhou, Y.; Kou, J. H.; Chen, X. Y.; Tian, Z. P.; Gao, J.; Yan, S. C.; Zou, Z. G. J. Am. Chem. Soc. 2010, 132, 14385. doi: 10.1021/ja1068596  doi: 10.1021/ja1068596

    17. [17]

      Zhang, J.; Ayusawa, T.; Minagawa, M.; Kinugawa, K.; Yamashita, H.; Matsuoka, M.; Anpo, M. J. Catal. 2001, 198, 1. doi: 10.1006/jcat.2000.3076  doi: 10.1006/jcat.2000.3076

    18. [18]

      Yin, X. T.; Liu, Y.; Tan, X. M.; Gao, X. C.; Li, J.; Ma, X. G. ACS Omega 2022, 7, 21262. doi: 10.1021/acsomega.2c02405  doi: 10.1021/acsomega.2c02405

    19. [19]

      Wen, C.; Liu, T. Y.; Wang, D. P.; Wang, Y. Q.; Chen, H. P.; Luo, G. Q.; Zhou, Z. J.; Li, C. K.; Xu, M. H. Prog. Energ. Combust. 2023, 99, 101098. doi: 10.1016/j.pecs.2023.101098  doi: 10.1016/j.pecs.2023.101098

    20. [20]

      Xiao, L.; Chen, P.; Yang, W. P.; Zhao, X. L.; Dong, F. Catal. Sci. Technol. 2021, 11, 7807. doi: 10.1039/d1cy01776d  doi: 10.1039/d1cy01776d

    21. [21]

      Zhu, Q. H.; Wang, Y.; Wang, J. J.; Luo, J. M.; Xu, J. S.; Wang, C. Y. Appl. Catal. B-Environ. 2024, 346, 123734. doi: 10.1016/j.apcatb.2024.123734  doi: 10.1016/j.apcatb.2024.123734

    22. [22]

      Xin, Y.; Zhu, Q. H.; Gao, T.; Li, X. M.; Zhang, W.; Wang, H.; Ji, D. H.; Huang, Y.; Padervand, M.; Wang, C. Y.; et al. Appl. Catal. B-Environ. 2023, 324, 122238. doi: 10.1016/j.apcatb.2022.122238  doi: 10.1016/j.apcatb.2022.122238

    23. [23]

      Luo, Z. B.; Wang, T.; Zhang, J. J.; Li, C. C.; Li, H. M.; Gong J. L. Angew. Chem. Int. Ed. 2017, 56, 12878. doi: 10.1002/anie.201705772  doi: 10.1002/anie.201705772

    24. [24]

      Li, H. D.; Liu, H. Y.; Wang, F.; Li, G. D.; Wang, X. L.; Tang, Z. Y. Nano Res. 2022, 15, 5824. doi: 10.1007/s12274-022-4203-z  doi: 10.1007/s12274-022-4203-z

    25. [25]

      Ye, Q. J.; Xu, L.; Xia, Y.; Gang, R. Q.; Xie, C. J. Porous. Mat. 2022, 29, 571. doi: 10.1007/s10934-022-01197-2  doi: 10.1007/s10934-022-01197-2

    26. [26]

      Wang, W. J.; Zhou, C. Y.; Yang, Y.; Zeng, G. M.; Zhang, C.; Zhou, Y.; Yang, J. N.; Huang, D. L.; Jia, M. Y.; Luo, H. Z. Chem. Eng. J. 2021, 404, 126540. doi: 10.1016/j.cej.2020.126540  doi: 10.1016/j.cej.2020.126540

    27. [27]

      Shi, Y. X.; Zhao, Q.; Li, J. Y.; Gao, G. Y.; Zhi, J. F. Appl. Catal. B-Environ. 2022, 308, 121216. doi: 10.1016/j.apcatb.2022.121216  doi: 10.1016/j.apcatb.2022.121216

    28. [28]

      Hayat, A.; Syed, J.; Al-Sehemi, A. S.; El-Nasser, K.; Taha, T. A. A.; Al-Ghamdi, A. A.; Amin, M.; Ajmal, Z.; Nawawi, W. I.; Sohail, M.; et al. Int. J. Hydrog. Energy 2022, 47, 10837. doi: 10.1016/j.ijhydene.2021.11.252  doi: 10.1016/j.ijhydene.2021.11.252

    29. [29]

      Wu, Y.; Che, H. A.; Liu, B.; Ao, Y. H. Small Struct. 2023, 4, 2200371. doi: 10.1002/sstr.202200371  doi: 10.1002/sstr.202200371

    30. [30]

      Li, Y. H.; Gu, M. L.; Zhang, X. M.; Fan, J. J.; Lv, K. L.; Carabineiro, S. A. C.; Dong, F. Mater. Today 2020, 41, 270. doi: 10.1016/j.mattod.2020.09.004  doi: 10.1016/j.mattod.2020.09.004

    31. [31]

      Yang, B.; Li, X. L.; Zhang, Q.; Yang, X. D.; Wan, J. G.; Liao, G. F.; Zhao, J. J.; Wang, R. J.; Rodriguez, R. D.; Jia, X. Appl. Catal. B-Environ. 2022, 314, 121521. doi: 10.1016/j.apcatb.2022.121521  doi: 10.1016/j.apcatb.2022.121521

    32. [32]

      Wang, Z. W.; Wang, H.; Zeng, Z. T.; Zeng, G. M.; Xu, P.; Xiao, R.; Huang, D. L.; Chen, X. J.; Wang, W. J.; Xiong, W. P.; et al. Appl. Catal. B-Environ. 2020, 267, 118700. doi: 10.1016/j.apcatb.2020.118700  doi: 10.1016/j.apcatb.2020.118700

    33. [33]

      Eid, K.; Gamal, A.; Abdullah, A. M. Green Chem. 2023, 25, 1276. doi: 10.1039/d2gc02748h  doi: 10.1039/d2gc02748h

    34. [34]

      Xia, X.; Xie, C.; Xu, B.G.; Ji, X. S.; Gao, G. G.; Yang, P. J. Ind. Eng. Chem. 2022, 105, 303. doi: 10.1016/j.jiec.2021.09.033  doi: 10.1016/j.jiec.2021.09.033

    35. [35]

      Wu, H. Z.; Bandaru, S.; Liu, J.; Li, L. L.; Wang, Z. L. Appl. Surf. Sci. 2018, 430, 125. doi: 10.1016/j.apsusc.2017.06.073  doi: 10.1016/j.apsusc.2017.06.073

    36. [36]

      Dong, G. H.; Jacobs, D. L.; Zang, L.; Wang, C. Y. Appl. Catal. B-Environ. 2017, 218, 515. doi: 10.1016/j.apcatb.2017.07.010  doi: 10.1016/j.apcatb.2017.07.010

    37. [37]

      Zheng, R.; Li, C. H.; Zhang, C. Z.; Wang, W. T.; Wang, L.; Feng, L. J.; Bian, J. J. Chin. J. Chem. Eng. 2020, 28, 1840. doi: 10.1016/j.cjche.2020.02.020  doi: 10.1016/j.cjche.2020.02.020

    38. [38]

      Rao, F.; Zhu, G. Q.; Zhang, W. B.; Gao, J. Z.; Zhang, F. C.; Huang, Y.; Hojamberdiev, M. Appl. Catal. B-Environ. 2021, 281, 119481. doi: 10.1016/j.apcatb.2020.119481  doi: 10.1016/j.apcatb.2020.119481

    39. [39]

      Cooper, M. J.; Martin, R. V.; Hammer, M. S.; Levelt, P. F.; Veefkind, P.; Lamsal, L. N.; Krotkov, N. A.; Brook, J. R.; McLinden, C. A. Nature 2022, 601, 380. doi: 10.1038/s41586-021-04229-0  doi: 10.1038/s41586-021-04229-0

    40. [40]

      Iqbal, O.; Ali, H.; Li, N.; Al-Sulami, A. I.; Alshammari, K. F.; Abd-Rabboh, H. S. M.; Al-Hadeethi, Y.; Din, I. U.; Hayat, A.; Ansari, M. Z.; et al. Mater. Today Phys. 2023, 34, 101080. doi: 10.1016/j.mtphys.2023.101080  doi: 10.1016/j.mtphys.2023.101080

    41. [41]

      Wudil, Y. S.; Ahmad, U. F.; Gondal, M. A.; Al-Osta, M. A.; Almohammedi, A.; Sa'id, R. S.; Hrahsheh, F.; Haruna, K.; Mohamed, M. J. S. Arab. J. Chem. 2023, 16, 104542. doi: 10.1016/j.arabjc.2023.104542  doi: 10.1016/j.arabjc.2023.104542

    42. [42]

      Li, X. W.; Zhang, W. D.; Cui, W.; Li, J. Y.; Sun, Y. J.; Jiang, G. M.; Huang, H. W.; Zhang, Y. X.; Dong, F. Chem. Eng. J. 2019, 370, 1366. doi: 10.1016/j.cej.2019.04.003  doi: 10.1016/j.cej.2019.04.003

    43. [43]

      Gorai, D. K.; Kundu, T. K. Appl. Surf. Sci. 2022, 590, 153104. doi: 10.1016/j.apsusc.2022.153104  doi: 10.1016/j.apsusc.2022.153104

    44. [44]

      He, Y. Z.; Chen, M. Z.; Jiang, Y.; Tang, L.; Yu, J. N.; Chen, Y.; Fu, M.; Tan, X. M.; Zhang, G. Z.; Liu, X. Y.; et al. J. Alloy. Compd. 2022, 903, 163806. doi: 10.1016/j.jallcom.2022.163806  doi: 10.1016/j.jallcom.2022.163806

    45. [45]

      Pham, V. V.; Truong, T. K.; Le, H. V.; Nguyen, H. T.; Tong, H. D.; Cao, T. M. Langmuir 2022, 38, 4138. doi: 10.1021/acs.langmuir.2c00371  doi: 10.1021/acs.langmuir.2c00371

    46. [46]

      Pham, V. V.; Mai, D. Q.; Bui, D. P.; Man, T. V.; Zhu, B. C.; Zhang, L. Y.; Sangkaworn, J.; Tantirungrotechai, J.; Reutrakul, V.; Cao, T. M. Environ. Pollut. 2021, 286, 117510. doi: 10.1016/j.envpol.2021.117510  doi: 10.1016/j.envpol.2021.117510

    47. [47]

      Wang, Z. Y.; Huang, Y.; Chen, M. J.; Shi, X. J.; Zhang, Y. F.; Cao, J. J.; Ho, W. K.; Lee, S. C. ACS Appl. Mater. Interfaces 2019, 11, 10651. doi: 10.1021/acsami.8b21987  doi: 10.1021/acsami.8b21987

    48. [48]

      Xu, Y.; Jiang, S. X.; Yin, W. J.; Sheng, W.; Wu, L. X.; Nie, G. Z.; Ao, Z. M. Appl. Surf. Sci. 2020, 501, 144199. doi: 10.1016/j.apsusc.2019.144199  doi: 10.1016/j.apsusc.2019.144199

    49. [49]

      Geng, J. H.; Zhao, L. L.; Wang, M. M.; Dong, G. H.; Ho, K. Environ. Sci.-Nano 2022, 9, 742. doi: 10.1039/d1en00937k  doi: 10.1039/d1en00937k

    50. [50]

      Fu, M.; Hu, X. L.; Wang, C.; Lu, P.; Bai, J. W.; Wang, R. Q.; Tan, X. M. J. Alloy. Compd. 2022, 906, 164371. doi: 10.1016/j.jallcom.2022.164371  doi: 10.1016/j.jallcom.2022.164371

    51. [51]

      Wang, Q.; Zhang, L. X.; Guo, Y. K.; Shen, M.; Wang, M.; Li, B.; Shi, J. L. Chem. Eng. J. 2020, 396, 125347. doi: 10.1016/j.cej.2020.125347  doi: 10.1016/j.cej.2020.125347

    52. [52]

      Bai, K. F.; Cui, Z.; Li, E. L.; Ding, Y. C.; Zheng, J. S.; Liu, C.; Zheng, Y. P. Vacuum 2020, 175, 109293. doi: 10.1016/j.vacuum.2020.109293  doi: 10.1016/j.vacuum.2020.109293

    53. [53]

      Al Mayyahi, A.; Sekar, A.; Rajendran, S.; Sigdel, S.; Lu, L. Y.; Wang, J.; Wang, G. H.; Li, J.; Amama, P. B. J. Photochem. Photobiol. A-Chem. 2023, 444, 114965. doi: 10.1016/j.jphotochem.2023.114965  doi: 10.1016/j.jphotochem.2023.114965

    54. [54]

      Xia, Y.; Yang, H.; Ho, W. K.; Zhu, B. C.; Yu, J. G. Appl. Catal. B-Environ. Energy 2024, 344, 123604. doi: 10.1016/j.apcatb.2023.123604  doi: 10.1016/j.apcatb.2023.123604

    55. [55]

      Jiang, L. B.; Yang, J. J.; Zhou, S. Y.; Yu, H. B.; Liang, J.; Chu, W.; Li, H.; Wang, H. Wu, Z. B.; Yuan, X. Z. Coordin. Chem. Rev. 2021, 439, 213947. doi: 10.1016/j.ccr.2021.213947  doi: 10.1016/j.ccr.2021.213947

    56. [56]

      Zhu, W. Y.; Yue, Y. X.; Wang, H. H.; Zhang, B.; Hou, R. B.; Xiao, J. T.; Huang, X. S.; Ishag, A.; Sun, Y. B. J. Environ. Chem. Eng. 2023, 11, 110164. doi: 10.1016/j.jece.2023.110164  doi: 10.1016/j.jece.2023.110164

    57. [57]

      Li, Y. H.; He, Z. J.; Liu, L.; Jiang, Y.; Ong, W. J.; Duan, Y. Y.; Ho, W. K.; Dong, F. Nano Energy 2023, 105, 108032. doi: 10.1016/j.nanoen.2022.108032  doi: 10.1016/j.nanoen.2022.108032

    58. [58]

      Lu, Y. F.; Chen, M. J.; Jiang, L.; Cao, J. J.; Li, H. W.; Lee, S. C.; Huang, Y. Environ. Chem. Lett 2022, 20, 3905. doi: 10.1007/s10311-022-01437-6  doi: 10.1007/s10311-022-01437-6

    59. [59]

      Cao, S. W.; Low, J. X.; Yu, J. G.; Jaroniec. M. Adv. Mater 2015, 27, 2150. doi: 10.1002/adma.201500033  doi: 10.1002/adma.201500033

    60. [60]

      Hayat, A.; Shaishta, N.; Mane, S. K. B.; Hayat, A.; Khan, J.; Rehman, A. U.; Li, T. H. J. Colloid. Interf. Sci. 2020, 560, 743. doi: 10.1016/j.jcis.2019.10.088  doi: 10.1016/j.jcis.2019.10.088

    61. [61]

      Xia, X.; Xie, C.; Che, Q. D.; Yang, P. Langmuir 2023, 39, 1250. doi: 10.1021/acs.langmuir.2c03035  doi: 10.1021/acs.langmuir.2c03035

    62. [62]

      Wang, X. T.; Ren, Y. Y.; Li, Y.; Zhang, G. K. Chemosphere 2022, 287, 132098. doi: 10.1016/j.chemosphere.2021.132098  doi: 10.1016/j.chemosphere.2021.132098

    63. [63]

      Dong, X. A.; Li, J. Y.; Xing, Q.; Zhou, Y.; Huang, H. W.; Dong, F. Appl. Catal. B-Environ. 2018, 232, 69doi: 10.1016/j.apcatb.2018.03.054  doi: 10.1016/j.apcatb.2018.03.054

    64. [64]

      Wang, Z. Y.; Chen, M. J.; Huang, Y.; Shi, X. J.; Zhang, Y. F.; Huang, T. T.; Cao, J. J.; Ho, W. K.; Lee, S. C. Appl. Catal. B-Environ. 2018, 239, 352. doi: 10.1016/j.apcatb.2018.08.030  doi: 10.1016/j.apcatb.2018.08.030

    65. [65]

      Wang, Z. L.; Wang, J.; Zhang, J. F.; Dai, K. Acta Phys.-Chim. Sin. 2023, 39, 2209037. doi: 10.3866/PKU.WHXB202209037  doi: 10.3866/PKU.WHXB202209037

    66. [66]

      Ling, Y.; Wu, J.; Li, B.; Liu, D. J. Energy Fuels 2021, 35, 9322. doi: 10.1021/acs.energyfuels.1c00624  doi: 10.1021/acs.energyfuels.1c00624

    67. [67]

      Liao, J. Z.; Cui, W.; Li, J. Y.; Sheng, J. P.; Wang, H.; Dong, X. A.; Chen, P.; Jiang, G. M.; Wang, Z. M.; Dong, F. Chem. Eng. J. 2020, 379, 122282. doi: 10.1016/j.cej.2019.122282  doi: 10.1016/j.cej.2019.122282

    68. [68]

      Duan, Y. Y.; Wang, Y.; Gan, L. Y.; Meng, J. Z.; Feng, Y. J.; Wang, K. W.; Zhou, K.; Wang, C.; Han, X. D.; Zhou, X. Y. Adv. Energy Mater. 2021, 11, 2004001. doi: 10.1002/aenm.202004001  doi: 10.1002/aenm.202004001

    69. [69]

      Gu, W. J.; Lu, D. Z.; Kiran, K. K.; Li, J.; Cheng, P. F.; Ho, W. K.; Wang, Y. W.; Zhao, Z. Y.; Wang, Z. Mat. Today. Phys. 2024, 46, 101487. doi: 10.1016/j.mtphys.2024.101487  doi: 10.1016/j.mtphys.2024.101487

    70. [70]

      Li, Y. H.; Gu, M. L.; Zhang, M.; Zhang, X. M.; Lv, K. L.; Liu, Y. Q.; Ho, W. K.; Dong, F. Chem. Eng. J. 2020, 389, 124421. doi: 10.1016/j.cej.2020.124421  doi: 10.1016/j.cej.2020.124421

    71. [71]

      Li, Y. H.; Gu, M. L.; Shi, T.; Cui, W.; Zhang, X. M.; Dong, F.; Cheng, J. S.; Fan, J. J.; Lv, K. L. Appl. Catal. B-Environ. 2020, 262, 118281. doi: 10.1016/j.apcatb.2019.118281  doi: 10.1016/j.apcatb.2019.118281

    72. [72]

      Zhang, C. L.; Xu, Y. K.; Bai, H. J.; Li, D. F.; Wei, L.; Feng, C. L.; Huang, Y. H.; Wang, Z. S.; Hu, C. G.; Wang, F.; et al. Nano Energy 2024, 121, 109197. doi: 10.1016/j.nanoen.2023.109197  doi: 10.1016/j.nanoen.2023.109197

    73. [73]

      Qi, Z.; Chen, J. B.; Zhou, W. C.; Li, Y. H.; Li, X. F.; Zhang, S. S.; Fan, J. J.; Lv, K. L. Chemosphere 2023, 316, 11. doi: 10.1016/j.chemosphere.2023.137813  doi: 10.1016/j.chemosphere.2023.137813

    74. [74]

      Baudys, M.; Pausová, S.; Praus, P.; Brezova, V.; Dvoranová, D.; Barbieriková, Z.; Krysa, J. Materials 2020, 13, 3038. doi: 10.3390/ma13133038  doi: 10.3390/ma13133038

    75. [75]

      Ran, M. X.; Li, J. R.; Cui, W.; Li, Y. H.; Li, P. D.; Dong, F. Catal. Sci. Technol. 2018, 8, 3387. doi: 10.1039/C8CY0088  doi: 10.1039/C8CY0088

    76. [76]

      Zhang, J. L.; Li, Z.; Liu, B.; Chen, M. S.; Zhou, Y. T.; Zhou, M. S. Appl. Catal. B-Environ. 2023, 328, 122522. doi: 10.1016/j.apcatb.2023.122522  doi: 10.1016/j.apcatb.2023.122522

    77. [77]

      Zhou, M.; Zeng, L. B.; Li, R.; Yang, C.; Qin, X.; Ho, W. K.; Wang, X. C. Appl. Catal. B-Environ. 2022, 317, 121719. doi: 10.1016/j.apcatb.2022.121719  doi: 10.1016/j.apcatb.2022.121719

    78. [78]

      Zhang, R. Y.; Cao, Y. H.; Doronkin, D. E.; Ma, M. Z.; Dong, F. Zhou, Y. Chem. Eng. J. 2023, 454, 140084. doi: 10.1016/j.cej.2022.140084  doi: 10.1016/j.cej.2022.140084

    79. [79]

      Li, J. Y.; Dong, X. A.; Sun, Y. J.; Jiang, G. M.; Chu, Y. H.; Lee, S. C.; Dong, F. Appl. Catal. B-Environ. 2018, 239, 187. doi: 10.1016/j.apcatb.2018.08.019  doi: 10.1016/j.apcatb.2018.08.019

    80. [80]

      Zhou, M.; Dong, G. H.; Ma, J. L.; Dong, F.; Wang, C. Y.; Sun, J. W. Appl. Catal. B-Environ. 2020, 273, 119007. doi: 10.1016/j.apcatb.2020.119007  doi: 10.1016/j.apcatb.2020.119007

    81. [81]

      Yi, J. J.; Liao, J. Z.; Xia, K. X.; Song, Y. H.; Lian, J. B.; She, X. J.; Liu, Y. X.; Yuan, S. Q.; Xu, H.; Li, H. M.; et al. Chem. Eng. J. 2019, 370, 944. doi: 10.1016/j.cej.2019.03.182  doi: 10.1016/j.cej.2019.03.182

    82. [82]

      Wang, H.; Xu, X. Q.; Labidi, A.; Ren, H. T.; Allam, A. A.; Rady, A.; Ghasemi, S.; Huang, Y.; Padervand, M.; Wang, C. Y.; et al. Catalysts 2023, 13, 1433. doi: 10.3390/catal13111433  doi: 10.3390/catal13111433

    83. [83]

      Yu, M. X.; Chang, S. X.; Ma, L.; Wu, X. F.; Yan, J. T.; Ding, Y. B.; Zhang, X.; Carabineiro, S. A.C.; Lv, K. Sep. Purif. Technol. 2025, 353, 128695. doi: 10.1016/j.seppur.2024.128695  doi: 10.1016/j.seppur.2024.128695

    84. [84]

      Chen, P.; Wang, H.; Liu, H. J.; Ni, Z. L.; Li, J. Y.; Zhou, Y.; Dong, F. Appl. Catal. B-Environ. 2019, 242, 19. doi: 10.1016/j.apcatb.2018.09.078  doi: 10.1016/j.apcatb.2018.09.078

    85. [85]

      Dong, G. H.; Zhao, L. L.; Wu, X. X.; Zhu, M. S.; Wang, F. Appl. Catal. B-Environ. 2019, 245, 459. doi: 10.1016/j.apcatb.2019.01.013  doi: 10.1016/j.apcatb.2019.01.013

    86. [86]

      Li, K. N.; Zhou, W. C.; Li, X. F.; Li, Q.; Carabineiro, S. A. C.; Zhang, S. S.; Fan, J. J.; Lv, K. L. J. Hazard. Mater. 2023, 442, 130040. doi: 10.1016/j.jhazmat.2022.130040  doi: 10.1016/j.jhazmat.2022.130040

    87. [87]

      Du, G. Z.; Zhang, Q.; Xiao, X. Y.; Yi, Z. Y.; Zheng, Q.; Zhao, H. T.; Zou, Y. Z.; Huang, Z. A.; Wang, D. J.; Zhu, L.; et. al. J. Alloy. Compd. 2021, 882, 160318. doi: 10.1016/j.jallcom.2021.160318  doi: 10.1016/j.jallcom.2021.160318

    88. [88]

      Li, K. L.; Cui, W.; Li, J. Y.; Sun, Y. J.; Chu, Y. H.; Jiang, G. M.; Zhou, Y.; Zhang, Y. L.; Dong, F. Chem. Eng. J. 2019, 378, 122184. doi: 10.1016/j.cej.2019.122184  doi: 10.1016/j.cej.2019.122184

    89. [89]

      Cui, W.; Chen, L. C.; Sheng, J. P.; Li, J. Y.; Wang, H.; Dong, X. A.; Zhou, Y.; Sun, Y. J.; Dong, F. Appl. Catal. B-Environ. 2020, 262, 118251. doi: 10.1016/j.apcatb.2019.118251  doi: 10.1016/j.apcatb.2019.118251

    90. [90]

      Cao, Y. H.; Zhang, R. Y.; Zheng, Q.; Cui, W.; Liu, Y.; Zheng, K. B.; Dong, F.; Zhou, Y. ACS Appl. Mater. Interfaces 2020, 12, 34432. doi: 10.1021/acsami.0c09216  doi: 10.1021/acsami.0c09216

    91. [91]

      Liu, J. Y.; Huang, X. X.; Hu. L. Z.; Liu, P. L. Jia, L. H.; Sasaki, K.; Tan, Z. C.; Yu, H. S. Chem. Eng. J. 2023, 476, 146768. doi: 10.1016/j.cej.2023.146768  doi: 10.1016/j.cej.2023.146768

    92. [92]

      Cui, Y. P.; Huang, X. X.; Wang, T.; Jia, L. H.; Nie, Q. Q.; Tan, Z. C.; Yu, H. S. Carbon 2022, 191, 502. doi: 10.1016/j.carbon.2022.02.004  doi: 10.1016/j.carbon.2022.02.004

    93. [93]

      Tan, P.; Mao, Z.; Li, Y. H.; Yu, J. Y.; Long, L. J. J. Colloid. Interf. Sci. 2024, 663, 992. doi: 10.1016/j.jcis.2024.02.221  doi: 10.1016/j.jcis.2024.02.221

    94. [94]

      Han, H. N.; Wang, X. L.; Qiao, Y. M.; Lai, Y. L.; Liu, B.; Zhang, Y.; Luo, J. M.; Toan, S.; Wang, L. J. Alloy. Compd. 2023, 933, 167819. doi: 10.1016/j.jallcom.2022.167819  doi: 10.1016/j.jallcom.2022.167819

    95. [95]

      Liu, X. Q.; Kang, W.; Zeng, W.; Zhang, Y. X.; Qi, L.; Ling, F. L.; Fang, L.; Chen, Q.; Zhou, M. Appl. Surf. Sci. 2020, 499, 143994. doi: 10.1016/j.apsusc.2019.143994  doi: 10.1016/j.apsusc.2019.143994

    96. [96]

      Wu, J. J.; Li, N.; Fang, H. B.; Li, X. T.; Zheng, Y. Z.; Tao, X. Chem. Eng. J. 2019, 358, 20. doi: 10.1016/j.cej.2018.09.208  doi: 10.1016/j.cej.2018.09.208

    97. [97]

      Wang, X. W.; Li, Q. C.; Gan, L.; Ji, X. F.; Chen, F. Y.; Peng, X. K.; Zhang, R. B. J. Energy Chem. 2021, 53, 139. doi: 10.1016/j.jechem.2020.05.001  doi: 10.1016/j.jechem.2020.05.001

    98. [98]

      Rezaei. M.; Nezamzadeh, A.; Massah, A. R. Energy Fuels 2024, 38, 8406. doi: 10.1021/acs.energyfuels.4c00160  doi: 10.1021/acs.energyfuels.4c00160

    99. [99]

      He, H. W.; Wang, Z. L.; Zhang, J. F.; Shao, C. F.; Dai, K.; Fan, K. Adv. Funct. Mater. 2024, 34, 2315426. doi: 10.1002/adfm.202315426  doi: 10.1002/adfm.202315426

    100. [100]

      Li, X. J.; Sun, W.; Ming, Q. Y.; Liu, Y. C.; Liao, G. D.; Wang, H. T.; Jiang, J. Z. J. Liaocheng Univ. Nat. Sci. Ed. 2024, 37, 70. doi: 10.19728/j.issn1672-6634.2023080011  doi: 10.19728/j.issn1672-6634.2023080011

    101. [101]

      Wang, Y. Q.; Shen, S. H. Acta Phys.-Chim. Sin. 2020, 36, 1905080. doi: 10.3866/PKU.WHXB201905080  doi: 10.3866/PKU.WHXB201905080

    102. [102]

      Li, J. R.; Ran, M. X.; Chen, P.; Cui, W.; Li, J. Y.; Sun, Y. J.; Jiang, G. M.; Zhou, Y.; Dong, F. Catal. Sci. Technol. 2019, 9, 4531. doi: 10.1039/c9cy01030k  doi: 10.1039/c9cy01030k

    103. [103]

      Agrawal, S.; Casanova, D.; Trivedi, D. J.; Prezhdo, O. V. J. Phys. Chem. Lett. 2024, 15, 2202. doi: 10.1021/acs.jpclett.3c03621  doi: 10.1021/acs.jpclett.3c03621

    104. [104]

      Wang, J.; Wang, Z. L.; Zhang, J. F.; Dai, K. Chin. J. Struct. Chem. 2023, 42, 100202. doi: 10.1016/j.cjsc.2023.100202  doi: 10.1016/j.cjsc.2023.100202

    105. [105]

      Che, W.; Cheng, W. R.; Yao, T.; Tang, F. M.; Liu, W.; Su, H.; Huang, Y. Y.; Liu, Q. H.; Liu, J. K.; Hu, F. C.; et al. J. Am. Chem. Soc. 2017, 139, 8, 3021. doi: 10.1021/jacs.6b11878  doi: 10.1021/jacs.6b11878

    106. [106]

      Zhang, S.; Song, S.; Gu, P. C.; Ma, R.; Wei, D. L.; Zhao, G. X.; Wen, T.; Jehan, R.; Hu, B. W.; Wang, X. K. J. Mater. Chem. A 2019, 7, 5552. doi: 10.1039/C9TA00339H  doi: 10.1039/C9TA00339H

    107. [107]

      Bai, C. P.; Bi, J. C.; Wu, J. B.; Han, Y. D.; Zhang, X. New J. Chem. 2018, 42, 16005. doi: 10.1039/C8NJ02991A  doi: 10.1039/C8NJ02991A

    108. [108]

      Wang, N.; Cheng, L.; Liao, Y. L.; Xiang, Q. J. Small 2023, 19, 2300109. doi: 10.1002/smll.202300109  doi: 10.1002/smll.202300109

    109. [109]

      He, Y. Q.; Ma, B.; Yang, Q.; Tong, Y.; Ma, Z. Y.; Lucas B. J.; Yao, B. H. Appl. Surf. Sci. 2022, 571, 151299. doi: 10.1016/j.apsusc.2021.151299  doi: 10.1016/j.apsusc.2021.151299

    110. [110]

      Wu, C. B.; Han, Q.; Qu, L. T. APL Mater 2020, 8, 120703. doi: 10.1063/5.0029374  doi: 10.1063/5.0029374

    111. [111]

      Huang, X. H.; Song, J. P.; Wu, G. Y.; Miao, Z. H.; Song, Y. H.; Mo, Z. Inorg. Chem. Front. 2024, 11, 2527. doi: 10.1039/D4QI00255E  doi: 10.1039/D4QI00255E

    112. [112]

      Lu, Y. N.; Zou, X. I.; Wang, L.; Geng, Y. L. J. Liaocheng Univ. Nat. Sci. Ed. 2023, 36, 57. doi: 10.19728/j.issn1672-6634.2023040004  doi: 10.19728/j.issn1672-6634.2023040004

    113. [113]

      Cai, M. J.; Liu, Y. P.; Dong, K. X.; Chen, X. B.; Li, S. J. Chin. J. Catal. 2023, 52, 239. doi: 10.1016/S1872-2067(23)64496-1  doi: 10.1016/S1872-2067(23)64496-1

    114. [114]

      Zhang, H. B.; Shao, C. F.; Wang, Z. L.; Zhang, J. F.; Dai, K. J. Mater. Sci. Technol. 2024, 195, 146. doi: 10.1016/j.jmst.2023.11.081  doi: 10.1016/j.jmst.2023.11.081

    115. [115]

      Xu, X. T.; Shao, C, F.; Zhang, J. F.; Wang, Z. L.; Dai, K. Acta Phys.-Chim. Sin. 2024, 40, 2309031. doi: 10.3866/PKU.WHXB202309031  doi: 10.3866/PKU.WHXB202309031

    116. [116]

      Chen, C. G.; Zhang, J. F.; Chu, H. L.; Sun, L. X.; Dawson, G.; Dai, K. Chin. J. Cata 2024, 63, 81. doi: 10.1016/S1872-2067(24)60072-0  doi: 10.1016/S1872-2067(24)60072-0

    117. [117]

      Yang, T. T.; Wang, J.; Wang, Z. L.; Zhang, J. F.; Dai, K. Chin. J. Catal 2024, 58, 157. doi: 10.1016/S1872-2067(23)64607-8  doi: 10.1016/S1872-2067(23)64607-8

    118. [118]

      Liu, D. N.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. Angew. Chem.-Int. Edit. 2020, 59, 4519. doi: 10.1002/anie.201914949  doi: 10.1002/anie.201914949

    119. [119]

      Xia, P.; Cao, S.; Zhu, B.; Liu, M.; Shi, M.; Yu, J.; Zhang, Y. Angew. Chem. Int. Ed. 2020, 59, 5218. doi: 10.1002/anie.201916012  doi: 10.1002/anie.201916012

    120. [120]

      Nazir, A.; Huo, P. W.; Ameena, T. R. J. Organomet. Chem. 2024, 1004, 122951. doi: 10.1016/j.jorganchem.2023.122951  doi: 10.1016/j.jorganchem.2023.122951

    121. [121]

      Wu, X. H.; Chen, G. Q.; Wang, J.; Li, J. M.; Wang, G. H. Acta Phys.-Chim. Sin. 2023, 39, 2212016. doi: 10.3866/PKU.WHXB202212016  doi: 10.3866/PKU.WHXB202212016

    122. [122]

      Luo, C.; Long, Q.; Cheng, B.; Zhu, B. C.; Wang, L. X. Acta Phys.-Chim. Sin. 2023, 39, 2212026. doi: 10.3866/PKU.WHXB202212026  doi: 10.3866/PKU.WHXB202212026

    123. [123]

      Hao, P. Y.; Chen, Z, Z.; Yan, Y. J.; Shi, W. L.; Guo, F. Sep. Purif. Technol. 2024, 330, 125302. doi: 10.1016/j.seppur.2023.125302  doi: 10.1016/j.seppur.2023.125302

    124. [124]

      Xiao, Y. W.; Tian, X.; Chen, Y. H.; Xiao, X. C.; Chen, T.; Wang, Y. D. Materials 2023, 16, 3745. doi: 10.3390/ma16103745  doi: 10.3390/ma16103745

    125. [125]

      Wang, W. K.; Mei, S. B.; Jiang, H. P.; Wang, L. L.; Tang, H.; Liu, Q. Q. Chin. J. Catal. 2023, 55, 137. doi: 10.1016/S1872-2067(23)64551-6  doi: 10.1016/S1872-2067(23)64551-6

    126. [126]

      Wang, Z. Y.; Shi, X. J.; Chen, M. J.; Cao, J. J.; Ho, W. K.; Lee, S. C.; Wang, C. Y.; Huang, Y. Environ. Chem. Lett. 2023, 21, 2913. doi: 10.1007/s10311-023-01583-5  doi: 10.1007/s10311-023-01583-5

  • 加载中
    1. [1]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    2. [2]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    3. [3]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    4. [4]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    5. [5]

      Min WANGDehua XINWei ZHANGHaiying YANGYuchun WANGZhaorong LIUMeng SHILe SHI . Preparation and full-spectrum catalytic degradation performance of nitrogen vacancy g-C3N4/Bi/BiOBr/BiOI heterojunction material. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2283-2298. doi: 10.11862/CJIC.20250109

    6. [6]

      Jiayao WangGuixu PanNing WangShihan WangYaolin ZhuYunfeng Li . Preparation of donor-π-acceptor type graphitic carbon nitride photocatalytic systems via molecular level regulation for high-efficient H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(12): 100168-0. doi: 10.1016/j.actphy.2025.100168

    7. [7]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    8. [8]

      Yongxin LIUXingchen LIHongjia LIUDanni LITao ZHANGXi CHEN . Enhancement effect of Fe3O4 conversion to MIL-100(Fe) on activation of persulfate for degradation of antibiotic. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2503-2513. doi: 10.11862/CJIC.20250169

    9. [9]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    10. [10]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    11. [11]

      Xinyu YinHaiyang ShiYu WangXuefei WangPing WangHuogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007

    12. [12]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    13. [13]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    14. [14]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    15. [15]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    16. [16]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    17. [17]

      Shiyi ChenJialong FuJianping QiuGuoju ChangShiyou Hao . Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(1): 100135-0. doi: 10.1016/j.actphy.2025.100135

    18. [18]

      Tianjun NiHui ZhangLiping ZhouRoujie MaYanyu WangZhijun YangDan LuoNithima KhaorapapongXingtao XuYusuke YamauchiDong Liu . Atomic cobalt catalysts on 3D interconnected g-C3N4 support for activation of peroxymonosulfate: The importance of Co-N coordination effect. Chinese Chemical Letters, 2025, 36(9): 110659-. doi: 10.1016/j.cclet.2024.110659

    19. [19]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    20. [20]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

Metrics
  • PDF Downloads(0)
  • Abstract views(178)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return