Citation: Jiahui YU, Jixian DONG, Yutong ZHAO, Fuping ZHAO, Bo GE, Xipeng PU, Dafeng ZHANG. The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst[J]. Journal of Fuel Chemistry and Technology, ;2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1 shu

The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst

  • Corresponding author: Dafeng ZHANG, dafengzh@hotmail.com
  • Received Date: 1 September 2024
    Revised Date: 7 November 2024
    Accepted Date: 11 November 2024
    Available Online: 24 March 2025

Figures(10)

  • By adjusting the pH value of the precursor solution, different morphologies of BiVO4:Yb3+,Er3+-X (BYE-X) were successfully synthesized via a facile microwave hydrothermal method. Tetracycline was employed as a model pollutant to evaluate the full-spectrum photocatalytic activity of BYE-X samples. The experimental results revealed that when the pH ranged from 3 to 8, BYE showed pure monoclinic BiVO4 phase. At pH values of 10−12, the synthesized samples had mixed phases of Bi2O(OH)(VO4), Bi2O3, and BiVO4. A notable variation in the morphological characteristics of BYE was observed with the increasing pH values. The samples of different pH values showed obvious up-conversion luminescence. Due to the up-conversion of Er3+ and Yb3+, the near-infrared (NIR) light was effectively utilized, successfully broadening the light response range. Under the visible or NIR light irradiation, BYE-5 demonstrated the optimal photodegradation activity. Based on the experimental results, a mechanism for full-spectrum photocatalysis was proposed. This work provides a feasible approach to improving the utilization of solar light by semiconductor catalysts, thereby achieving efficient full-spectrum photocatalytic activity.
  • 加载中
    1. [1]

      KANG N, XU D, SHI W. Synthesis plasmonic Bi/BiVO4 photocatalysts with enhanced photocatalytic activity for degradation of tetracycline (TC)[J]. Chin J Chem Eng,2019,27(12):3053−3059.  doi: 10.1016/j.cjche.2019.05.008

    2. [2]

      LIANG H, ZHU C, WANG A, et al. Facile synthesis of NiAl2O4/g-C3N4 composite for efficient photocatalytic degradation of tetracycline[J]. J Environ Sci,2023,127:700−713.  doi: 10.1016/j.jes.2022.06.032

    3. [3]

      YUAN Hao, SUN Xinhai, LI Ruiguang, et al. Achieving high-efficient broad spectrum driven photo-Fenton degradation of tetracycline via carbon dots modified NiFe2O4 nanoparticles[J]. J Liaocheng Univ Nat Sci Ed,2024,37(2):69−79.

    4. [4]

      CAO Qingqing, CHEN Xiangyu, WU Jianhao, et al. Visible-light photodegradation of tetracycline hydrochloride on self-sensitive carbon-nitride microspheres enhanced by SiO2[J]. J Inorg Mater,2024,39(7):787−792.  doi: 10.15541/jim20240009

    5. [5]

      HUANG J, LIU R, QIN H, et al. Rationally designed MIL-101(Fe)/WO3 S-scheme heterojunction coupled with peroxymonosulfate for boosting the visible-light-driven photodegradation of tetracycline hydrochloride[J]. Appl Surf Sci,2024,663:160185.  doi: 10.1016/j.apsusc.2024.160185

    6. [6]

      FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature,1972,238(5358):37−38.  doi: 10.1038/238037a0

    7. [7]

      CHAUDHARY K, SHAHEEN N, ZULFIQAR S, et al. Binary WO3-ZnO nanostructures supported rGO ternary nanocomposite for visible light driven photocatalytic degradation of methylene blue[J]. Synth Met,2020,269:116526.  doi: 10.1016/j.synthmet.2020.116526

    8. [8]

      SU Ping, YU Jiahui, DENG Peixin, et al. Construction of 0D/1D Cd0.5Zn0.5S/VO)2S S-scheme heterojunction for visible light photocatalytic hydrogen generation via water splitting[J]. J Liaocheng Univ Nat Sci Ed,2024,37(5):123−131.

    9. [9]

      HAN C, ZHANG X, HUANG S, et al. MOF-on-MOF-derived hollow Co3O4/In2O3 nanostructure for efficient photocatalytic CO2 reduction[J]. Adv Sci,2023,10(19):2300797.  doi: 10.1002/advs.202300797

    10. [10]

      WANG H, XIONG Y, HE Y, et al. Photocatalytic degradation of benzotriazole through synergy of electron donor–acceptor units and Au clusters in covalent organic frameworks[J]. Chem Eng J,2024,480:148309.  doi: 10.1016/j.cej.2023.148309

    11. [11]

      ZHAO Yutong, WANG Shikai, ZHAO Fuping, et al. Construction and visible photocatalytic hydrogen performance of hydrangea-like ZnIn2S4/CoWO4 S-scheme heterojunction[J]. Chem J Chin Univ,2024,45(5):20240055.

    12. [12]

      ALAMGIR, ULLAH R, TALHA K, et al. MOF-derived In2O3/TiO2 S-scheme heterojunction for efficient photocatalytic degradation of tetracycline[J]. J Alloys Compd,2024,1002:175398.  doi: 10.1016/j.jallcom.2024.175398

    13. [13]

      TANZID M, HOGAN N, ROBATJAZI H, et al. Absorption-enhanced imaging through scattering media using carbon black nano-particles: from visible to near infrared wavelengths[J]. J Opt,2018,20(5):054001.  doi: 10.1088/2040-8986/aab3a2

    14. [14]

      WANG M, XIN D, ZHANG W, et al. Defects and plasma Ag co-modified S-scheme Ag/NVs-CN/Bi2O2−δCO3 heterojunction with multilevel charge transfer channels for boosting full-spectrum-driven degradation of antibiotics[J]. J Alloys Compd,2024,970:172672.  doi: 10.1016/j.jallcom.2023.172672

    15. [15]

      WANG X, LONG R, LIU D, et al. Enhanced full-spectrum water splitting by confining plasmonic Au nanoparticles in N-doped TiO2 bowl nanoarrays[J]. Nano Energy,2016,24:87−93.  doi: 10.1016/j.nanoen.2016.04.013

    16. [16]

      SHEN Y, SHI Y, CHEN Z, et al. Core-shell nanoconfinement: Nanoreactors for directional electron migration in photothermal-assisted photocatalytic hydrogen production[J]. Chem Eng. J,2024,484:149607.  doi: 10.1016/j.cej.2024.149607

    17. [17]

      TANG J, LIU X, LIU Y, et al. Novel Z-scheme Sr2MgSi2O7: Eu2+, Dy3+/Ag3PO4 photocatalyst for round-the-clock efficient degradation of organic pollutants and hydrogen production[J]. Chem Eng. J,2022,435:134773.  doi: 10.1016/j.cej.2022.134773

    18. [18]

      REN H, HUANG F, JIANG J, et al. Development of photocatalyst based on NaYF4: Yb, Tm@NaYF4: Yb, Ce/NH2-MIL-101 (Cr): Doping Ce3+ ions to promote the efficient energy transfer between core and shell[J]. Chem Eng J,2022,427:132023.  doi: 10.1016/j.cej.2021.132023

    19. [19]

      LIU Feng. Design, construction, and performance of rare earth doped BiVO4 based nanophotocatalyst[D]. Changchun: Changchun University of Science and Technology, 2024.)

    20. [20]

      CHEN H, MENG F, LI S, et al. Efficient activation of peroxymonosulfate by Z-scheme NiCo2O4/BiVO4 heterojunctions for rapid degradation of tetracycline under visible light irradiation[J]. J Water Process,2023,56:104282.  doi: 10.1016/j.jwpe.2023.104282

    21. [21]

      LIU F, WANG Y, ZHANG S, et al. Enhanced ultraviolet-visible-near infrared driven photocatalytic activity of 1D/0D BiVO4: Er/Yb@Ag/Ag3PO4 Z-scheme heterostructure via a synergetic strategy of plasmonic effect and upconversion luminescence[J]. Ceram Int,2023,49(16):26589−26603.  doi: 10.1016/j.ceramint.2023.05.194

    22. [22]

      ZHONG X, LI Y, WU H, et al. Recent progress in BiVO4-based heterojunction nanomaterials for photocatalytic applications[J]. Mater Sci Eng B,2023,289:116278.  doi: 10.1016/j.mseb.2023.116278

    23. [23]

      ZHAO Y, DING C, ZHU J, et al. A hydrogen farm strategy for scalable solar hydrogen production with particulate photocatalysts[J]. Angew Chem Int Ed,2020,59(24):9653−9658.  doi: 10.1002/anie.202001438

    24. [24]

      ILYAS A, RAFIQ K, ABID M, et al. Growth of villi-microstructured bismuth vanadate (Vm-BiVO4) for photocatalytic degradation of crystal violet dye[J]. RSC Adv,2023,13(4):2379−2391.  doi: 10.1039/D2RA07070G

    25. [25]

      HE P, SUN L, KHAN S, et al. Construction of a bifunctional BiVO4 based S-scheme heterojunction for enhancing photothermal-photocatalytic oxygen generation and benzaldehyde production[J]. Fuel,2024,370:131813.  doi: 10.1016/j.fuel.2024.131813

    26. [26]

      WANG M, WU L, ZHANG F, et al. Doping with rare earth elements and loading cocatalysts to improve the solar water splitting performance of BiVO4[J]. Inorganics,2023,11(5):203.  doi: 10.3390/inorganics11050203

    27. [27]

      LI Y, YAO L, CHENG Z, et al. Controlled synthesis of bifunctional 3D BiOBr: Eu3+ hierarchitectures with tunable thickness for enhanced visible light photocatalytic activities and mechanism insight[J]. Catal Sci Technol,2019,9(18):5011−5021.  doi: 10.1039/C9CY00946A

    28. [28]

      LI Q, ZHANG Y, WU Z, et al. Enhancement of green upconversion luminescence of Yb3+/Tb3+ co-doped BiOBr nanosheets and its potential applications in photocatalysis[J]. J Solid State Chem,2022,308:122897.  doi: 10.1016/j.jssc.2022.122897

    29. [29]

      SHEN Z, LI H, HAO H, et al. Novel Tm3+ and Yb3+ co-doped bismuth tungstate up-conversion photocatalyst with greatly improved photocatalytic properties[J]. J Photoch Photobio A,2019,380:111864.  doi: 10.1016/j.jphotochem.2019.111864

    30. [30]

      REGMI C, KSHETRI Y, JEONG S, et al. BiVO4 as highly efficient host for near-infrared to visible upconversion[J]. J Appl Phys,2019,125(4):043101.  doi: 10.1063/1.5064726

    31. [31]

      MA W, LI Z, LIU W. Hydrothermal preparation of BiVO4 photocatalyst with perforated hollow morphology and its performance on methylene blue degradation[J]. Ceram Int, 2015, 41(3, Part B): 4340−4347.

    32. [32]

      YAO X, JIANG X, ZHANG D, et al. Achieving improved full-spectrum responsive 0D/3D CuWO4/BiOBr: Yb3+, Er3+ photocatalyst with synergetic effects of up-conversion, photothermal effect and direct Z-scheme heterojunction[J]. J Colloid Interface Sci,2023,644:95−106.  doi: 10.1016/j.jcis.2023.04.072

    33. [33]

      HAN Q, LI L, GAO W, et al. Elegant construction of ZnIn2S4/BiVO4 hierarchical heterostructures as direct Z-scheme photocatalysts for efficient CO2 photoreduction[J]. ACS Appl Mater Interfaces,2021,13(13):15092−15100.  doi: 10.1021/acsami.0c21266

    34. [34]

      YAN Jingchao, SHI Qin, LI Huansong, et al. Regulation of BiVO4 surface oxygen defects and photocatalytic oxidation of arsenic trivalent[J]. J. Environ.,2021,41(6):2120−2130.

    35. [35]

      COOPER J, GUL S, TOMA F, et al. Indirect bandgap and optical properties of monoclinic bismuth vanadate[J]. J Phys Chem C,2015,119(6):2969−2974.  doi: 10.1021/jp512169w

    36. [36]

      NIU Jie, WANG Liang, MENG Xiangchao, et al. Preparation of Mo-Zn0.5Cd0.5S@NiCo2S4 doped-heterojunction system and its bifunctional photocatalytic performance[J]. J Liaocheng Univ Nat Sci Ed,2024,37(1):36−45.

    37. [37]

      CAO B, GONG S, ZUBAIRU S, et al. Fabrication of Er3+/Yb3+ co-doped Bi5O7I microsphere with upconversion luminescence and enhanced photocatalytic activity for Bisphenol A degradation[J]. Front Chem,2020,8:773.  doi: 10.3389/fchem.2020.00773

    38. [38]

      GAO W, TIAN B, ZHANG W, et al. NIR light driven catalytic hydrogen generation over semiconductor photocatalyst coupling up-conversion component[J]. Appl Catal B: Environ,2019,257:117908.  doi: 10.1016/j.apcatb.2019.117908

    39. [39]

      WU W, CHEN D, ZHOU Y, et al. Near-single-band red upconversion luminescence in Yb/Er: BiOX (X = Cl, Br) nanoplatelets[J]. J Alloys Compd,2016,682:275−283.  doi: 10.1016/j.jallcom.2016.04.305

    40. [40]

      ZHAO K, LIU X, HE Q, et al. Preparation and characterization of Sm3+/Tm3+ co-doped BiVO4 micro-squares and their photocatalytic performance for CO2 reduction[J]. J Taiwan Inst Chem Eng,2023,144:104737.  doi: 10.1016/j.jtice.2023.104737

    41. [41]

      QIN H, WANG K, JIANG L, et al. Ultrasonic-assisted fabrication of a direct Z-scheme BiOI/Bi2O4 heterojunction with superior visible light-responsive photocatalytic performance[J]. J Alloys Compd,2020,821:153417.  doi: 10.1016/j.jallcom.2019.153417

    42. [42]

      YU Jiahui, YAO Xintong, SU Ping, et al. Construction of Cu3Mo2O9/Mn0.3Cd0.7S S-scheme heterojunction for photocatalytic hydrogen production via water splitting[J]. J Liaocheng Univ Nat Sci Ed,2024,37(1):52−61.

    43. [43]

      XING Y, LU X, LI Y, et al. Self-assembled Ag4V2O7/Ag3VO4 Z-scheme heterojunction by pH adjustment with efficient photocatalytic performance[J]. J Adv Ceram,2022,11(11):1789−1800.  doi: 10.1007/s40145-022-0648-5

  • 加载中
    1. [1]

      Chao Liu Huan Yu Jiaming Li Xi Yu Zhuangzhi Yu Yuxi Song Feng Zhang Qinfang Zhang Zhigang Zou . Facile synthesis of hierarchical Ti3C2/Bi12O17Br2 Schottky heterojunction with photothermal effect for solar-driven antibiotics photodegradation. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-. doi: 10.1016/j.actphy.2025.100075

    2. [2]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    3. [3]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    4. [4]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    5. [5]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    6. [6]

      Sikai Wu Xuefei Wang Huogen Yu . Hydroxyl-enriched hydrous tin dioxide-coated BiVO4 with boosted photocatalytic H2O2 production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100457-100457. doi: 10.1016/j.cjsc.2024.100457

    7. [7]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    8. [8]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    9. [9]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    10. [10]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    11. [11]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    12. [12]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    13. [13]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    14. [14]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    15. [15]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    16. [16]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    17. [17]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    18. [18]

      Longsheng ZhanYuchao WangMengjie LiuXin ZhaoDanni DengXinran ZhengJiabi JiangXiang XiongYongpeng Lei . BiVO4 as a precatalyst for CO2 electroreduction to formate at large current density. Chinese Chemical Letters, 2025, 36(3): 109695-. doi: 10.1016/j.cclet.2024.109695

    19. [19]

      Lina WangHairu WangQian BuQiong MeiJunbo ZhongBo BaiQizhao Wang . Al-O bridged NiFeOx/BiVO4 photoanode for exceptional photoelectrochemical water splitting. Chinese Chemical Letters, 2025, 36(4): 110139-. doi: 10.1016/j.cclet.2024.110139

    20. [20]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

Metrics
  • PDF Downloads(18)
  • Abstract views(991)
  • HTML views(169)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return