Citation: Bo CHEN, Lei LI, Zhi-ju DIAO, Rui-dong CAO, Li-fei SONG, Liang-qiu HUANG, Xue WANG. Catalytic hydrogenolysis of diphenyl ether over Ru supported on amorphous silicon-aluminum-TiO2[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(5): 621-627. doi: 10.1016/S1872-5813(21)60191-3 shu

Catalytic hydrogenolysis of diphenyl ether over Ru supported on amorphous silicon-aluminum-TiO2

  • Corresponding author: Bo CHEN, bochen@nwu.edu.cn Zhi-ju DIAO, zjdiao@nwu.edu.cn
  • Received Date: 18 August 2021
    Revised Date: 4 September 2021
    Accepted Date: 7 September 2021
    Available Online: 9 June 2022

Figures(8)

  • A bifunctional catalyst of Ru5/ASA-TiO2 was prepared by using a novel silicon-aluminum (ASA)-TiO2 amorphous composite, which was synthesized by a steam-assisted method, as the support. X-ray diffraction (XRD), pyridine adsorption infrared (Py-FTIR), ammonia-temperature-programmed desorption (NH3-TPD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and other methods were used to characterize the structure and the acidity of the prepared catalyst. Using diphenyl ether as the lignite-related model compound, the reaction activity of the Ru5/ASA-TiO2 for the catalytic hydrogenolysis of 4–O–5 type ether bonds was investigated under a mild condition. The results show that the weak acid and/or the Lewis acid rather than the strong Brønsted acid mainly contribute to improve the conversion rate and the benzene yield of the catalytic hydrogenolysis of diphenyl ether. The reaction temperature can influence the relative content of various types of acids to significantly affect the selectivity of the hydrogenolysis products of diphenyl ether. The conversion rate of diphenyl ether is greater than 98% while the benzene yield is 67.1%.
  • 加载中
    1. [1]

      THIELEMANN T, SCHMIDT S, GERLING J P. Lignite and hard coal: Energy suppliers for world needs until the year 2100 – an outlook[J]. Int J Coal Geol,2007,72(1):1−14.  doi: 10.1016/j.coal.2007.04.003

    2. [2]

      NOLAN P, SHIPMAN A, RUI H. Coal liquefaction, Shenhua group, and China’s energy security[J]. Eur Manag J,2004,22(2):150−164.  doi: 10.1016/j.emj.2004.01.014

    3. [3]

      DONG L, YUAN Q, YUAN H. Changes of chemical properties of humic acids from crude and fungal transformed lignite[J]. Fuel,2006,85(17/18):2402−2407.  doi: 10.1016/j.fuel.2006.05.027

    4. [4]

      XIE J X, CAO J P, ZHAO X Y, JIANG W, ZHAO L, ZHAO M, BAI H C. Selective cleavage of the diphenyl ether C–O bond over a Ni catalyst supported on AC with different pore structures and hydrophilicities[J]. Energy Fuels,2021,35(11):9599−9608.  doi: 10.1021/acs.energyfuels.1c00809

    5. [5]

      CAO J P, XIE T, ZHAO X Y, ZHU C, JIANG W, ZHAO M, ZHAO Y P, WEI X Y. Selective cleavage of ether C–O bond in lignin-derived compounds over Ru system under different H-sources[J]. Fuel,2021,284:119027.  doi: 10.1016/j.fuel.2020.119027

    6. [6]

      ZHAO C, LERCHER J A. Upgrading pyrolysis oil over Ni/HZSM-5 by cascade reactions[J]. Angew Chem Int Ed,2012,51(24):5935−5940.  doi: 10.1002/anie.201108306

    7. [7]

      TAN Q, WANG G, NIE L, DINSE A, BUDA C, SHABAKER J, RESASCO D E. Different product distributions and mechanistic aspects of the hydrodeoxygenation of m-cresol over platinum and ruthenium catalysts[J]. ACS Catal,2015,5(11):6271−6283.  doi: 10.1021/acscatal.5b00765

    8. [8]

      LUO Z, WANG Y M, HE M Y, ZHAO C. Precise oxygen scission of lignin derived aryl ethers to quantitatively produce aromatic hydrocarbons in water[J]. Green Chem,2015,18(2):433−441.

    9. [9]

      ZAKI M I, HASAN M A, PASUPULETY L. Surface reactions of acetone on Al2O3, TiO2, ZrO2, and CeO2: IR spectroscopic assessment of impacts of the surface acid-base properties[J]. Langmuir,2001,17(3):768−774.  doi: 10.1021/la000976p

    10. [10]

      ZAKI M I, HASAN M A, AL-SAGHEE F A, PASUPULETY L. In situ FTIR spectra of pyridine adsorbed on SiO2-Al2O3, TiO2, ZrO2 and CeO2: General considerations for the identification of acid sites on surfaces of finely divided metal oxides[J]. Colloids Surf A Physicochem Eng Asp,2001,190(3):261−274.  doi: 10.1016/S0927-7757(01)00690-2

    11. [11]

      GRIFFIN M B, FERGUSON G A, RUDDY D A, BIDDY M J, SCHAIDLE J A. Role of the support and reaction conditions on the vapor-phase deoxygenation of m-cresol over Pt/C and Pt/TiO2 catalysts[J]. ACS Catal,2016,6(4):2715−2727.  doi: 10.1021/acscatal.5b02868

    12. [12]

      BOONYASUWAT S, OMOTOSO T, RESASCO D E, CROSSLEY S P. Conversion of guaiacol over supported Ru catalysts[J]. Catal Lett,2013,143(8):783−791.  doi: 10.1007/s10562-013-1033-3

    13. [13]

      KARIM W, SPREAFICO C, KLEIBERT A, GOBRECHT J, VANDEVONDELE J, EKINCI Y, VAN BOKHOVEN J A. Catalyst support effects on hydrogen spillover[J]. Nature,2017,541(7635):68−71.  doi: 10.1038/nature20782

    14. [14]

      ALMEIDA A R, MOULIJN J A, MUL G. Photocatalytic oxidation of cyclohexane over TiO2: Evidence for a Mars-van Krevelen mechanism[J]. J Phys Chem C,2011,115(4):1330−1338.  doi: 10.1021/jp107290r

    15. [15]

      VOLCKMAR C E, BRON M, BENTRUP U, MARTIN A, CLAUS P. Influence of the support composition on the hydrogenation of acrolein over Ag/SiO2-Al2O3 catalysts[J]. J Catal,2009,261(1):1−8.  doi: 10.1016/j.jcat.2008.10.012

    16. [16]

      NAITO N, KATADA N, NIWA M. Tungsten oxide monolayer loaded on zirconia: Determination of acidity generated on the monolayer[J]. J Phys Chem B,1999,103(34):7206−7213.  doi: 10.1021/jp9906381

    17. [17]

      LI L, LIU G N, QI S P, LIU X D, GU L Y, LOU Y B, CHEN J X, ZHAO Y X. Highly efficient colloidal MnxCd1−xS nanorod solid solution for photocatalytic hydrogen generation[J]. J Mater Chem A,2018,6(46):23683−23689.  doi: 10.1039/C8TA08458K

    18. [18]

      NEIMARK A V, RAVIKOVITCH P I, GRÜN M, SCHÜTH F, UNGER K K. Pore size analysis of MCM-41 type adsorbents by means of nitrogen and argon adsorption[J]. J Colloid Interface Sci,1998,207(1):159−169.  doi: 10.1006/jcis.1998.5748

    19. [19]

      SHAMZHY M, PŘECH J, ZHANG J, RUAUX V, EL-SIBLANI H, MINTOVA S. Quantification of Lewis acid sites in 3D and 2D TS-1 zeolites: FTIR spectroscopic study[J]. Catal Today,2020,345:80−87.  doi: 10.1016/j.cattod.2019.10.011

    20. [20]

      VALDÉS-MARTÍNEZ O U, SUÁREZ-TORIELLO V A, REYES J A, PAWELEC B, FIERRO J. Support effect and metals interactions for NiRu/Al2O3, TiO2 and ZrO2 catalysts in the hydrodeoxygenation of phenol[J]. Catal Today,2017,296:219−227.  doi: 10.1016/j.cattod.2017.04.007

    21. [21]

      KANG Y, WEI X Y, LI J, JIN H, LI T, LU C Y, MA X R, ZONG Z. Green and effective catalytic hydroconversion of an extractable portion from an oil sludge to clean jet and diesel fuels over a mesoporous Y zeolite-supported nickel catalyst[J]. Fuel,2021,287:119396.  doi: 10.1016/j.fuel.2020.119396

    22. [22]

      DENG X, WEI Z, CUI C, LIU Q, WANG C, MA J. Oxygen-deficient anatase TiO2@C nanospindles with pseudocapacitive contribution for enhancing lithium storage[J]. J Mater Chem A,2018,6(9):4013−4022.  doi: 10.1039/C7TA11301C

    23. [23]

      HERY, HAERUDIN, STEPHAN, BERTEL, REINHARD, KRAMER. Surface stoichiometry of 'titanium suboxide' Part I volumetric and FTIR study[J]. J Chem Soc, Faraday Trans,1998,94(10):1481−1487.  doi: 10.1039/a707714i

    24. [24]

      HUANG Y, YAN L, CHEN M, GUO Q, FU Y. Selective hydrogenolysis of phenols and phenyl ethers to arenes through direct C–O cleavage over ruthenium-tungsten bifunctional catalysts[J]. Green Chem,2015,17(5):3010−3017.  doi: 10.1039/C5GC00326A

    25. [25]

      NELSON R C, BAEK B, RUIZ P, GOUNDIE B, BROOKS A, WHEELER M C, AUSTIN R N. Experimental and theoretical insights into the hydrogen-efficient direct hydrodeoxygenation mechanism of phenol over Ru/TiO2[J]. ACS Catal,2015,5(11):6509−6523.  doi: 10.1021/acscatal.5b01554

  • 加载中
    1. [1]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    5. [5]

      Yun-Fei ZhangChun-Hui ZhangJian-Hui XuLei LiDan LiJin-Hong FanJiale GaoXin QuanQi WuYue ZouYan-Ling Liu . Enhanced degradation of florfenicol by microscale SiC/Fe: Dechlorination via hydrogenolysis. Chinese Chemical Letters, 2024, 35(7): 109385-. doi: 10.1016/j.cclet.2023.109385

    6. [6]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    7. [7]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    8. [8]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    9. [9]

      Yizhe ChenYuzhou JiaoLiangyu SunCheng YuanQian ShenPeng LiShiming ZhangJiujun Zhang . Nonmetallic phosphorus alloying to regulate the oxygen reduction mechanisms of platinum catalyst. Chinese Chemical Letters, 2025, 36(4): 110789-. doi: 10.1016/j.cclet.2024.110789

    10. [10]

      Bingwei WangYihong DingXiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721

    11. [11]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

    12. [12]

      Xiao ZhuYanbing MoJiawei ChenGaopan LiuYonggang WangXiaoli Dong . A weakly-solvated ether-based electrolyte for fast-charging graphite anode. Chinese Chemical Letters, 2024, 35(8): 109146-. doi: 10.1016/j.cclet.2023.109146

    13. [13]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    14. [14]

      Yuetong GaoTong MuXinyue HuYang PangChengji Zhao . Facile synthesis of all-carbon fluorinated backbone polymers containing sulfide linkage as proton exchange membranes for fuel cells. Chinese Chemical Letters, 2025, 36(6): 110763-. doi: 10.1016/j.cclet.2024.110763

    15. [15]

      Liying OuZhenluan XueBo LiZhiwei JinJiaochan ZhongLixia YangPenghui ShaoShenglian Luo . Nitrogen-containing linkage-bonds in covalent organic frameworks: Synthesis and applications. Chinese Chemical Letters, 2025, 36(6): 110294-. doi: 10.1016/j.cclet.2024.110294

    16. [16]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

    17. [17]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    18. [18]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    19. [19]

      Yanling YangZhenfa DingHuimin WangJianhui LiYanping ZhengHongquan GuoLi ZhangBing YangQingqing GuHaifeng XiongYifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585

    20. [20]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

Metrics
  • PDF Downloads(8)
  • Abstract views(2429)
  • HTML views(281)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return