Citation: Ya-jie LIU, Zhen-hui LIANG, Xing LIU, Li-jing YUAN. Progress of selective ring-opening reaction of decalin[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(5): 576-582. doi: 10.1016/S1872-5813(21)60186-X shu

Progress of selective ring-opening reaction of decalin

  • Corresponding author: Li-jing YUAN, yuanlijing@sxicc.ac.cn
  • Received Date: 9 October 2021
    Revised Date: 7 December 2021
    Accepted Date: 7 December 2021
    Available Online: 9 June 2022

Figures(7)

  • As a typical saturated bicyclic compound, decalin is normally used as a probe molecule of saturated cycloalkanes for the mechanism study of selective ring-opening reaction during the hydrogenation of light cycle oil. In this review, the molecular structure and reaction characteristics of cis-decalin and trans-decalin are introduced. The mechanism of the selective ring-opening reaction of decalin based on different catalytic systems is systematically analyzed, including the carbocation mechanism on monofunctional acid catalysts, the hydrogenolysis reaction mechanism on monofunctional metal catalysts, and the bifunctional ring-opening reaction mechanism on acid-metal bifunctional catalysts. In addition, the effect of the process conditions, such as reaction temperature, support acidity and zeolite pore size, on the performance of selective ring-opening reaction of decalin are summarized. Finally, the shortcomings of current research are put forward, and the urgent and deserved research topics are proposed.
  • 加载中
    1. [1]

      MCVICKER G B, DAAGE M, TOUVELLE M S, HUDSON C W, KLEIN D P, BAIRD W C, COOK B R, CHEN J G, HANTZER S, VAUGHAN DEW. Selective ring opening of naphthenic molecules[J]. J Catal,2002,210(1):137−148.  doi: 10.1006/jcat.2002.3685

    2. [2]

      SUN Chen-chen. Study on hydrogenation saturation and selective ring opening of diesel aromatics[D]. Xi'an: Xi'an Shiyou University, 2016.

    3. [3]

      WANG Q, FAN H L, WU S X, ZHANG Z F, ZHANG P, HAN B X. Water as an additive to enhance the ring opening of naphthalene[J]. Green Chem,2012,14(4):1152−1158.  doi: 10.1039/c2gc16554f

    4. [4]

      DO P, ALVAREZ W, RESASCO D. Ring opening of 1, 2- and 1, 3-dimethylcyclohexane on iridium catalysts[J]. J Catal,2006,238(2):477−488.  doi: 10.1016/j.jcat.2005.12.021

    5. [5]

      MORAES R, THOMAS K, THOMAS S, DONK S V, GRASSO G, GILSON J P, HOUALLA M. Ring opening of decalin and methylcyclohexane over alumina-based monofunctional WO3/Al2O3 and Ir/Al2O3 catalysts[J]. J Catal,2012,286:62−77.  doi: 10.1016/j.jcat.2011.10.014

    6. [6]

      MOSTAD H, RIIS T, ELLESTAD O. Catalytic cracking of naphthenes and naphtheno-aromatics in fixed bed micro reactors[J]. J Catal,1990,1(63):345−364.

    7. [7]

      KUBIČKA D, KUMAR N, MÄKI-ARVELA P, TIITTA M, NIEMI V, SALMI T, MURZIN D Y. Ring opening of decalin over zeolites: I. Activity and selectivity of proton-form zeolites[J]. J Catal,2004,222(1):65−79.  doi: 10.1016/j.jcat.2003.10.027

    8. [8]

      MORAES R, THOMAS K, THOMAS S, DONK S V, GRASSO G, GILSON J P, HOUALLA M. Ring opening of decalin and methylcyclohexane over bifunctional Ir/WO3/Al2O3 catalysts[J]. J Catal,2013,299:30−43.  doi: 10.1016/j.jcat.2012.11.017

    9. [9]

      KUBIČKA D, KUMAR N, MÄKI-ARVELA P, TIITTA M, NIEMI V, KARHU H, SALMI T, MURZIN D Y. Ring opening of decalin over zeolites: II. Activity and selectivity of platinum-modified zeolites[J]. J Catal,2004,227(2):313−327.  doi: 10.1016/j.jcat.2004.07.015

    10. [10]

      YUAN L J, GUO S Q, LI Z R, CUI H T, DONG H Y, ZHAO L F, WANG J W. Ring opening of decalin over bifunctional Ni-W carbide/Al2O3-USY catalysts and monofunctional acid Ni-W oxide/Al2O3-USY[J]. RSC Adv,2017,7(16):9446−9455.  doi: 10.1039/C6RA27378E

    11. [11]

      SANTIKUNAPORN M, HERRERA J E, JONGPATIWUT S, RESASCO E D, ALVAREZ E W, SUGHRUE E L. Ring opening of decalin and tetralin on HY and Pt/HY zeolite catalysts[J]. J Catal,2004,228(1):100−113.  doi: 10.1016/j.jcat.2004.08.030

    12. [12]

      SANTANA R, DO P, SANTIKUNAPORN M. Evaluation of different reaction strategies for the improvement of cetane number in diesel fuels[J]. Fuel,2006,85(5/6):643−656.  doi: 10.1016/j.fuel.2005.08.028

    13. [13]

      GAULT F G. Mechanisms of skeletal isomerization of hydrocarbons on metals[J]. Adv Catal,1981,1(30):1−95.

    14. [14]

      KUSTOV L M, FINASHINA E D, AVAEV V I, ERSHOV B G. Decalin ring opening on Pt-Ru/SiO2 catalysts[J]. Fuel Process Technol,2018,173:270−275.  doi: 10.1016/j.fuproc.2018.02.007

    15. [15]

      MONTEIRO C A A, COSTA D, ZOTIN J L, CARDOSO D. Effect of metal-acid site balance on hydroconversion of decalin over Pt/Beta zeolite bifunctional catalysts[J]. Fuel,2015,160:71−79.  doi: 10.1016/j.fuel.2015.07.054

    16. [16]

      KANGAS M, KUBIČKA D, SALMI T, MURZIN D Y. Reaction routes in selective ring opening of naphthenes[J]. Top Catal,2010,53(15/18):1172−1175.  doi: 10.1007/s11244-010-9556-y

    17. [17]

      D'IPPOLITO S A, PIRAULT-ROY L, ESPECEL C, EPRON F, PIECK L C. Selective ring opening of decalin on Rh-Pd/SiO2-Al2O3 bifunctional systems: Catalytic performance and deactivation[J]. Fuel Process Technol,2018,177:6−15.  doi: 10.1016/j.fuproc.2018.04.008

    18. [18]

      BENITEZ V M, DE LIMA S P, RANGEL M D C, RUIZ D, REYES P, PIECK C L. Influence of the metallic content on Pt-Ir/Nb2O5 catalysts for decalin selective ring opening[J]. Catal Today,2017,289:53−61.  doi: 10.1016/j.cattod.2016.10.004

    19. [19]

      DI FELICE L, CATHERIN N, PICCOLO L, LAURENTI D, BLANCO E, LECLERC E, GEANTET C, CALEMMA V. Decalin ring opening over NiWS/SiO2-Al2O3 catalysts in the presence of H2S[J]. Appl Catal A: Gen,2016,512:43−51.  doi: 10.1016/j.apcata.2015.12.007

    20. [20]

      BLANCO E, DI FELICE L, CATHERIN N, PICCOLO L, LAURENTI D, LORENTZ C, GEANTET C, CALEMMA V. Understanding the mechanisms of decalin hydroprocessing using comprehensive two-dimensional chromatography[J]. Ind Eng Chem Res,2016,55(49):12516−12523.  doi: 10.1021/acs.iecr.6b03472

    21. [21]

      SUÁREZ N, ARRIBAS M A, MORENO A, MARTINEZ A. High-performing Ir- and Pt-containing catalysts based on mesoporous beta zeolite for the selective ring opening of decalin[J]. Catal Sci Technol,2020,10(4):1073−1085.  doi: 10.1039/C9CY01812C

    22. [22]

      YANG Hao-tian. Study on the catalyst for selective ring-opening of decalin[D]. Qingdao: China University of Petroleum (East China), 2018.

    23. [23]

      SUN Tang-xu. Study on the selective ring opening of decalin [D]. Tianjin: Tianjin University, 2012.

    24. [24]

      ZHANG Chuan-chuan, WANG Qing-fa. Influence of acid treatment on the selective ring opening of decalin over Beta zeolite[J]. Chem Ind Eng,2017,34(2):16−20.

    25. [25]

      LIU Xin-lin, XU You-hao, CUI Shou-ye. Effect of catalyst particle size distribution on the selectivity of catalytic cracking products[J]. Pet Process Petrochem,2011,2(42):42−46.

    26. [26]

      AL-SABAWI M, DE LASA H. Influence of zeolite crystallite size on methyl-cyclohexane catalytic conversion products[J]. Fuel,2012,96:511−523.  doi: 10.1016/j.fuel.2012.01.065

    27. [27]

      YUAN Shuai,LONG Jun,ZHOU Han,TIAN Hui-ping,ZHAO Yi. Molecular Simulation for the Diffusion Characteristics of Aromatic and Naphthenic Hydrocarbons in the Channel of MF1 and FAU Zeolites[J]. Acta Pet Sin (Pet Process Sect),2011,27(4):508−515.

    28. [28]

      SOUSA-AGUIAR E F, MOTA C J A, VALLE M L M, DA SILVA M P, DA SILVA D F. Catalytic cracking of decalin isomers over REHY-zeolites with different crystallite sizes[J]. J Mol Catal A: Chem,1996,104(3):267−271.  doi: 10.1016/1381-1169(95)00149-2

    29. [29]

      MOSTAD H B, RIIS T U, ELLESTAD O H. Shape selectivity in Y-zeolites: Catalytic cracking of decalin-isomers in fixed bed micro reactors[J]. Appl Catal,1990,58(1):105−117.

    30. [30]

      BLANCO E, PICCOLO L, LAURENTI D, DI FELICE LUCA, CATHERIN N, LORENTZ C, GEANTET C, CALEMMA V. Effect of H2S on the mechanisms of naphthene ring opening and isomerization over Ir/NaY: A comparative study of decalin, perhydroindan and butylcyclohexane hydroconversions[J]. Appl Catal A: Gen,2018,550:274−283.  doi: 10.1016/j.apcata.2017.11.020

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    3. [3]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    4. [4]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    5. [5]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    6. [6]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    7. [7]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    8. [8]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    9. [9]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    10. [10]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    11. [11]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    12. [12]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    13. [13]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    14. [14]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    15. [15]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    16. [16]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    17. [17]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    18. [18]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    19. [19]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    20. [20]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

Metrics
  • PDF Downloads(27)
  • Abstract views(3262)
  • HTML views(603)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return