Citation: Wei-qiang YANG, Kai-ming MAO, Wen-long MO, Feng-yun MA, Xian-yong WEI, Xin FAN, Tie-zhen REN. Mechanism analysis of methanol alcoholysis of Naomaohu lignite extraction residue based on model compound reaction path[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(4): 396-407. doi: 10.1016/S1872-5813(21)60178-0 shu

Mechanism analysis of methanol alcoholysis of Naomaohu lignite extraction residue based on model compound reaction path

Figures(14)

  • Ultrasonic assisted extraction residue (ER) from Naomaohu lignite (NL) was taken as the research object. ER was subjected to methanolysis at 300 ℃, and the effect of KOH was investigated. Composition of the two alcoholysis products, MP (without KOH) and MPKOH (with KOH) was analyzed by chromatograph/mass spectrometer (GC-MS). Benzyl benzoate (BB) and phenyl acetate (PA) were selected as model compounds (MER) for ER, and the alcoholysis products (BBP, BBPKOH, PAP and PAPKOH) were obtained. Results showed that the yield of MPKOH was 93.39%, while that of MP was only 5.25%, indicating that the addition of KOH greatly improved the yield of alcoholysis product. MP consisted of phenols, esters and alkanes with the relative contents of 17.92%, 34.83% and 5.98%, respectively, while the contents of the above three compounds in MPKOH were 34.8%, 10.17% and 8.71% respectively, indicating that transesterification or ester reduction reaction occurred in the alcoholysis process with the addition of KOH accompanied by alkylation reaction. Analysis of alcoholysis products of model compounds showed that methyl benzoate and benzyl alcohol were predominant in BBP, while methyl benzoate disappeared in BBPKOH, and the relative content of benzyl alcohol accounted for 91.85%; phenols were only detected in PAP, and the relative content of phenol was 87.97%. Whereas, the content of methyl substituted anisole and phenol accounted for the largest share in PAPKOH with the contents of 85.64%. Alcoholysis process of the two model compounds showed that, without KOH, transesterification or ester reduction reaction was occurred in the alcoholysis process. And the addition of KOH not only accelerated the above reaction, but also strengthened the alkylation reaction between the subsequent products and methanol.
  • 加载中
    1. [1]

      WU J H, LIU J Z, ZHANG X, WANG Z H, ZHOU J H, CEN K F. Chemical and structural changes in Ximeng lignite and its carbon migration during hydrothermal dewatering[J]. Fuel,2015,148:139−144.  doi: 10.1016/j.fuel.2015.01.102

    2. [2]

      LI Z K, WEI X Y, YAN H L, ZONG Z M. Insight into the structural features of Zhaotong lignite using multiple techniques[J]. Fuel,2015,153:176−182.  doi: 10.1016/j.fuel.2015.02.117

    3. [3]

      CONG X S, ZONG Z M, ZHOU Y, LI M, WANG W L, LI F G, ZHOU J, FAN X, ZHAO Y P, WEI X Y. Isolation and identification of 3-ethyl-8-methyl-2, 3-dihydro-1 H-cyclopenta [a] chrysene from Shengli lignite[J]. Energy Fuels,2014,28(10):6694−6697.  doi: 10.1021/ef402403y

    4. [4]

      LU H Y, Wei X Y, YU R, PENG Y L, QI X Z, QIE L M, WEI Q, LV J, ZHONG Z M, ZHAO W, ZHAO Y P, NI Z H, WU L. Sequential thermal dissolution of Huolinguole lignite in methanol and ethanol[J]. Energy Fuels,2011,25(6):2741−2745.  doi: 10.1021/ef101734f

    5. [5]

      YU X Y, WEI X Y, LI Z K, ZANG D D, ZONG Z M. Two-step depolymerization of Zhaotong lignite in ethanol[J]. Fuel,2017,196(15):391−397.

    6. [6]

      LIU F J, WEI X Y, ZHU Y, GUI J, WANG Y G, FAN X, ZHAO Y P, ZONG Z M, ZHAO W. Investigation on structural features of Shengli lignite through oxidation under mild conditions[J]. Fuel,2013,109:316−324.  doi: 10.1016/j.fuel.2013.01.020

    7. [7]

      ROSS D S, BLESSING J E. Alcohols as H-donor media in coal conversion. 2. Base-promoted H-donation to coal by methyl alcohol[J]. Fuel,1979,58(6):438−442.  doi: 10.1016/0016-2361(79)90085-1

    8. [8]

      LI S, ZONG Z M, LI Z K, WANG S K, YANG Z, XU M L, SHI C, WEI X Y, WANG Y G. Sequential thermal dissolution and alkanolyses of extraction residue from Xinghe lignite[J]. Fuel Process Technol,2017,167:425−430.  doi: 10.1016/j.fuproc.2017.07.025

    9. [9]

      LI Z K, ZONG Z M, YANG Z S, YAN H L, FAN X, WEI X Y. Sequential thermal dissolution of Geting bituminous coal in low-boiling point solvents[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects,2014,36(23):2579−2586.  doi: 10.1080/15567036.2013.869639

    10. [10]

      PAN C X, WEI X Y, SHUI H F, WANG Z C, GAO J, WEI C, GAO X Z, ZONG Z M. Investigation on the macromolecular network structure of Xianfeng lignite by a new two-step depolymerization[J]. Fuel,2013,109:49−53.  doi: 10.1016/j.fuel.2012.11.059

    11. [11]

      LEI Z P, LIU M X, SHUI H F, WANG Z C, WEI X Y. Study on the liquefaction of Shengli lignite with NaOH/methanol[J]. Fuel Process Technol,2010,91(7):783−788.  doi: 10.1016/j.fuproc.2010.02.014

    12. [12]

      LIU F J, WEI X Y, LI W T, GUI J, LI P, WANG Y G, XIE R L, ZONG Z M. Methanolysis of extraction residue from Xianfeng lignite with NaOH and product characterizations with different spectrometries[J]. Fuel Process Technol,2015,136:8−16.  doi: 10.1016/j.fuproc.2014.07.012

    13. [13]

      LI S, ZONG Z M, WANG S K, XU M L, WEI X Y, LIU F J. Compositional features of the extracts from the methanolysis of Xilingol No. 6 lignite[J]. Fuel,2019,246:516−520.  doi: 10.1016/j.fuel.2018.11.133

    14. [14]

      (MAO Kai-min, MO Wen-long, MA Feng-yun, MA Ya-ya, WANG Yue, WEI Xian-yong, FAN Xing. Composition and structure characteristics of soluble organic matter from Naomaohu lignite by sequential extraction and thermal conversion performance of the corresponding residue[J]. J Fuel Chem Technol,2021,49(10):1389−1401.  doi: 10.1016/S1872-5813(21)60117-2

    15. [15]

      XU M L, WEI X Y, YU X Y, LIU F J, WU Q C, LI S, WANG S K, LIU G H, LIU Z Q, GUO X H, ZHANG Y Y, ZONG Z M. Insight into molecular compositions of soluble species from sequential thermal dissolution of Liuhuanggou bituminous coal and its extraction residue[J]. Fuel,2019,253:762−771.  doi: 10.1016/j.fuel.2019.05.045

    16. [16]

      GAO Y, WEI X Y, LI Y J, BAI J J, KANG Y H, LIU G H, MA X R, LI X, LU C Y, BAI H C, ZONG Z M. Investigation on the composition of soluble portions from the extraction residue of Hanglaiwan subbituminous coal by thermal dissolution and alkanolyses[J]. Fuel,2021,306:121747.  doi: 10.1016/j.fuel.2021.121747

    17. [17]

      XIA Tong-cheng, WEI Xian-yong, LIU Wei-bing, QinYu, LU Yao, Zong Zhi-ming, XU Bing, WANG Shi-jie, LI Chong-qi. Supercritical methanolysis of Xilinhaote lignite[J]. J Wuhan Univ Sci Technol,2009,32(6):627−630.

    18. [18]

      KANG Y H, WEI X Y, ZHAN X Q, LI Y J, LIU G H, MA X R, LI X, BAI H C, LI Z N, YAN H J, ZONG Z M. Deep catalytic hydroconversion of straw-derived bio-oil to alkanes over mesoporous zeolite Y supported nickel nanoparticles[J]. Renewable Energy,2021,173:876−885.  doi: 10.1016/j.renene.2021.04.003

    19. [19]

      LI Bai-xue, XUE Feng, WANG Jian, Ding En-yong. Controllable glycolysis of polycarbonate in ethylene glycol[J]. China Plastics Ind,2015,43(3):127−131.  doi: 10.3969/j.issn.1005-5770.2015.03.022

    20. [20]

      YIN J N, LIN X C, WANG C H, DAI J Z, WANG Y G, XU Z G. Identification of the transformation features of heteroatomic compounds in a low rank coal by combining thermal extraction and various analytical approaches[J]. Fuel,2020,270:117480.  doi: 10.1016/j.fuel.2020.117480

    21. [21]

      SHUI H F, MA X Q, YANG L, SHUI T, PAN C X, WANG Z C, LEI Z P, REN S B, KANG S G, CHARLES XU C B. Thermolysis of biomass-related model compounds and its promotion on the thermal dissolution of coal[J]. J Energy Ins,2017,90(3):418−423.  doi: 10.1016/j.joei.2016.04.001

    22. [22]

      WANG T M, ZONG Z M, LIU F J, LUI C, LV J H, JING L, ZANG D D, QU M, GUI J, LIU X X, WEI X Y, WEI Z H, LI Y. Investigation on compositional and structural features of Xianfeng lignite through sequential thermal dissolution[J]. Fuel Process Technol,2015,138:125−132.  doi: 10.1016/j.fuproc.2015.04.029

    23. [23]

      MONDRAGON F, ITOH H, OUCHI K. Solubility increase of coal by alkylation with various alcohols[J]. Fuel,1982,61(11):1131−1134.  doi: 10.1016/0016-2361(82)90198-3

    24. [24]

      GAO H S, ZONG Z M, TENG D G, LI J H, WEI X Y, GUO Q J, ZHAO T S, BAI H C, KANG Y H. Catalytic o-methylation of phenols and its application in converting crude phenols in a low-temperature coal tar to mesitol and durenol[J]. Fuel,2021,288:119681.  doi: 10.1016/j.fuel.2020.119681

  • 加载中
    1. [1]

      Bohao LiuXue JiangRuizhi NingHeng ZhaoYanpeng ZhangJunnan ZhangTianqing LiuDanyao QuYinhui BaoZhanchen GuoXiaoyan ZengShan GaoKun FanRunyi TaoJian JiGuangjian ZhangWeiwei Wu . Tedlar bag free: Accurate volatolomics of ⅠA stage non-small cell lung cancer come out in wash. Chinese Chemical Letters, 2025, 36(6): 110301-. doi: 10.1016/j.cclet.2024.110301

    2. [2]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    3. [3]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    4. [4]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    5. [5]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    6. [6]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

    7. [7]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    8. [8]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    9. [9]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    10. [10]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    11. [11]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    12. [12]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    13. [13]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    14. [14]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    15. [15]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    16. [16]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    17. [17]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    18. [18]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    19. [19]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    20. [20]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

Metrics
  • PDF Downloads(0)
  • Abstract views(284)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return