In-situ oxidation of 5-hydroxymethylfurfural to 5-formylfuran-2-carboxylic acid catalyzed by iron, manganese, copper and salicylic amantadine Schiff base ligands
- Corresponding author: Jing-yun WANG, jingyun.wang@lnpu.edu.cn
Citation:
Ji-feng BAI, Man-fang CHENG, Hong-zhu LU, Ming-bo HOU, YANG Yu, Jing-yun WANG, Ming-dong ZHOU. In-situ oxidation of 5-hydroxymethylfurfural to 5-formylfuran-2-carboxylic acid catalyzed by iron, manganese, copper and salicylic amantadine Schiff base ligands[J]. Journal of Fuel Chemistry and Technology,
;2022, 50(4): 418-427.
doi:
10.1016/S1872-5813(21)60176-7
MURPHY J D, BROWNE J, ALLEN E, GALLAGHER C. The resource of biomethane, produced via biological, thermal and electrical routes, as a transport biofuel[J]. Renewable Energy,2013,55(1):474−479.
LICHTENTHALER F W, PETER S. Carbohydrates as green raw materials for the chemical industry[J]. Comptes Rendus Chimie,2004,7(2):65−90.
doi: 10.1016/j.crci.2004.02.002
SIANKEVICH S, SAVOGLIDIS G, FEI Z. A novel platinum nanocatalyst for the oxidation of 5-hydroxymethylfurfural into 2, 5-furandicarboxylic acid under mild conditions[J]. J Catal,2014,315(6):67−74.
CORMA A, IBORRA S, VELTY A. Chemical routes for the transformation of biomass into chemicals[J]. Chem Rev,2007,107(6):2411−2502.
doi: 10.1021/cr050989d
ROMÁN-LESHKOV Y, CHHEDA J N, DUMESIC J A. Phase modifiers promote efficient production of hydroxymethylfural from fructose[J]. Dumesic Sci,2006,312(5782):1933−1937.
doi: 10.1126/science.1126337
ZHAO H, HOLLADAY J E, BROWN H, ZHANG Z C. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural[J]. Science,2007,316(5831):1597−1600.
doi: 10.1126/science.1141199
SUN Z, CHENG M X, LI Z J, TIAN J, WANG X H. One pot production of 5-hydroxymethylfurfural with high yield from cellulose by a Brønsted-Lewis- surfactant-combined heteropolyacid catalyst[J]. Chem Commun,2011,47(7):2176−2178.
doi: 10.1039/c0cc04444j
STÅHLBERG T, FU W, WOODLEY J M, RIISAGER A. Synthesis of 5-(hydroxymethyl) furfural in ionic liquids: Paving the way to renewable chemicals[J]. ChemSusChem,2011,4(4):451−458.
doi: 10.1002/cssc.201000374
LAN J, LIN J, CHEN Z, YIN G. Transformation of 5-hydroxymethylfurfural (HMF) to maleic anhydride by aerobic oxidation with heteropolyacid catalysts[J]. ACS Catal,2015,5(4):2035−2041.
doi: 10.1021/cs501776n
PAL P, SARAVANAMURUGAN S. Recent advances in the development of 5-hydroxymethylfurfural oxidation with base (nonprecious)-metal-containing catalysts[J]. ChemSusChem,2018,12(1):145−163.
ZHANG Z, DENG K. Recent advances in the catalytic synthesis of 2, 5-furandicarboxylic acid and its derivatives[J]. ACS Catal,2015,5(11):6529−6544.
doi: 10.1021/acscatal.5b01491
ZHANG C, CHANG X, ZHU L, XING Q, YOU S, QI W, SU R, HE Z. Highly efficient and selective production of FFCA from CotA-TJ102 laccase-catalyzed oxidation of 5-HMF[J]. Int J Biol Macromol,2019,128(1):132−139.
GANDINI A, SILVESTRE A J D, NETO C P, SOUSA A F, GOMES M, The furan counterpart of poly(ethylene terephthalate): An alternative material based on renewable resources[J] J Polym Sci Pol Chem, 2009, 47 (1) 295−298.
XU J J, ZHU Z G, YUAN Z L, SUN T, ZHAO Y C, REN W Z, ZHANG Z H, LÜ H Y. Selective oxidation of 5-hydroxymethylfurfural to 5-formyl-2-furancar- boxylic acid over a Fe-Anderson type catalyst[J]. J Taiwan Inst Chem E,2019,104:8−15.
ZHU Y, ZHANG Y, CHENG L, ISMAEL M, FENG Z, WU Y. Novel application of g-C3N4/NaNbO3 composite for photocatalytic selective oxidation of biomass-derived HMF to FFCA under visible light irradiation[J]. Adv Powder Technol,2020,31(3):1148−1159.
doi: 10.1016/j.apt.2019.12.040
PAL P, KUMAR S, DEVI M M, SARAVANAMURUGAN S. Oxidation of 5-hydroxymethylfurfural to 5-formyl furan-2-carboxylic acid by non-precious transition metal oxide-based catalyst[J]. J Supercrit Fluids,2020,160(1):104−812.
VENTURA M, ARESTA M, DIBENEDETTO A. Selective aerobic oxidation of 5-(hydroxymethyl) furfural to 5-formyl-2-furancarboxylic acid in water[J]. ChemSusChem,2016,9(10):1096−1100.
doi: 10.1002/cssc.201600060
VENTURA M, LOBEFARO F, GIGLIO E, DISTASO M, NOCITO F, DIBENEDETTO A. Selective aerobic oxidation o 5-hydroxymethylfurfural to 2, 5-diformylfuran or 2-formyl-5-furancarboxylic acid in water by using MgO·CeO2 mixed oxides as catalysts[J]. ChemSusChem,2018,11(8):1305−1315.
doi: 10.1002/cssc.201800334
WANG H B. Synthesis, characterization and antibacterial activity of Schiff base containing adamantyl and Its Zinc complex[D]. Liaoning: Liaoning University, 2012.
JIN X D, WANG W C, FENG X X, BU L C, TONG J, ZHANG P, REN J K, ZHAO B X. Synthesis, characterization, crystal structure, and electrochemical property of copper(II) complexes with Schiff bases derived from 5-halogenated salicylaldehyde and amantadine[J]. J Coord Chem,2017,43(11):787−794.
doi: 10.1134/S1070328417110033
SHELDRICK G M. SHELXT-integrated space-group and cry-synthesis determination[J]. Acta Crystallogr A,2015,71(1):3−8.
JIN X D, KOU L, LIANG H M, TONG J, ZHANG P, HAN G C, REN J K, ZHAO B X. Syntheses and crystal structures of three copper(II) complexes with bulky Schiff bases derived from rimantadine[J]. J Coord Chem,2016,69(22):3309−3320.
doi: 10.1080/00958972.2016.1228910
KIM M, SU Y Q, FUKUOKA A, HENSEN E J M, NAKAJIMA K. Aerobic oxidation of 5-(hydroxymethyl) furfural cyclic acetal enables selective furan-2, 5-dicarboxylic acid formation with CeO2-supported gold catalyst[J]. Angew Chem Int Ed,2018,57(27):8235−8239.
doi: 10.1002/anie.201805457
RAO V K, PETER S. Oxidation of biomass derived 5-hydroxymethylfurfural using heterogeneous and electrochemical catalysis[J]. Catal Today, 2012, 195(1): 144−154.
REN Y S, LIU B, ZHANG Z H, LIN J T. Silver-exchanged heteropolyacid catalyst (Ag1H2PW): An efficient heterogeneous catalyst for the synthesis of 5-ethoxymethylfurfural from 5-hydroxymethylfurfural and fructose[J]. J Ind Eng Chem,2015,21(25):1127−1131.
JU E G, DONG K, CHEN Z W, LIU Z, LIU C Q, HUANG Y Y, WANG Z Z, PU F, REN J S, QU X G. Copper(ii) -graphitic carbon nitride triggered synergy: Improved ros generation and reduced glutathione levels for enhanced photodynamic therapy[J]. Angew Chem Int Ed,2016,55(38):11467−11471.
doi: 10.1002/anie.201605509
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Jinlong YAN , Weina WU , Yuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026
Jing WU , Puzhen HUI , Huilin ZHENG , Pingchuan YUAN , Chunfei WANG , Hui WANG , Xiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
Yuanyu YANG , Jianhua XUE , Yujia BAI , Lulu CUI , Dongdong YANG , Qi MA . Design, synthesis, and detection of Al3+ of two zinc complexes based on Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1207-1216. doi: 10.11862/CJIC.20250005
Yanyang Li , Zongpei Zhang , Kai Li , Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
Zhenghua ZHAO , Qin ZHANG , Yufeng LIU , Zifa SHI , Jinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.Mingjie Lei , Wenting Hu , Kexin Lin , Xiujuan Sun , Haoshen Zhang , Ye Qian , Tongyue Kang , Xiulin Wu , Hailong Liao , Yuan Pan , Yuwei Zhang , Diye Wei , Ping Gao . Co/Mn/Mo掺杂加速NiSe2重构以提高其电催化尿素氧化性能. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-. doi: 10.1016/j.actphy.2025.100083
Aiyi Xin , Jiawei Li , Xinyang Ran , Chuanjiang Fu , Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
Kaimin WANG , Xiong GU , Na DENG , Hongmei YU , Yanqin YE , Yulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009
Yellow solid:1H NMR (400 MHz, CDCl3): 14.51 (s, 1H), 8.32 (s, 1H), 7.25−7.29 (m, 2H), 6.93 (d, J= 8.0 Hz, 1H), 6.83 (t, J = 8.0 Hz, 1H), 2.18 (s, 3H), 1.84 (d, J=4.0 Hz, 6H),1.78−1.68 (m, 6H); 13C NMR (400 MHZ, CDCl3): 162.4, 159.2, 132.0, 131.3, 118.9, 118.0, 117.4, 57.1, 43.0, 36.3, 29.4; FT-IR (KBr, cm−1): 1613 (w), 1210 (m)