Citation: Ji-feng BAI, Man-fang CHENG, Hong-zhu LU, Ming-bo HOU, YANG Yu, Jing-yun WANG, Ming-dong ZHOU. In-situ oxidation of 5-hydroxymethylfurfural to 5-formylfuran-2-carboxylic acid catalyzed by iron, manganese, copper and salicylic amantadine Schiff base ligands[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(4): 418-427. doi: 10.1016/S1872-5813(21)60176-7 shu

In-situ oxidation of 5-hydroxymethylfurfural to 5-formylfuran-2-carboxylic acid catalyzed by iron, manganese, copper and salicylic amantadine Schiff base ligands

  • Corresponding author: Jing-yun WANG, jingyun.wang@lnpu.edu.cn
  • Received Date: 28 April 2021
    Revised Date: 12 October 2021

Figures(10)

  • To synthesize simple and efficient catalysts and their application in catalytic conversion of biomass platform compounds to prepare high value-added chemicals has always been the focus of researchers. In this paper, a catalyst composed of iron, manganese, copper and Schiff base ligand derived from amantadine salicylaldehyde was in-situ constructed to catalyze the selective oxidation of 5-hydroxymethylfurfural (HMF) to prepare 5-formyl-2-furancarboxylic acid (FFCA). The ligands and complexes were characterized by nuclear magnetic resonance (NMR), infrared spectroscopy (IR) and single crystal diffraction, and the reaction conditions such as oxidation reaction time, reaction temperature, molar ratio of MnCl2·4H2O to ligand, oxidant and catalyst dosage, etc, were optimized. Under the optimized conditions, 100% conversion of HMF and the FFCA with a yield of 52.1% can be obtained. Finally, on the basis of the reaction results, the HMF oxidation reaction process catalyzed by Mn metal complexes was analyzed.
  • 加载中
    1. [1]

      MURPHY J D, BROWNE J, ALLEN E, GALLAGHER C. The resource of biomethane, produced via biological, thermal and electrical routes, as a transport biofuel[J]. Renewable Energy,2013,55(1):474−479.

    2. [2]

      LICHTENTHALER F W, PETER S. Carbohydrates as green raw materials for the chemical industry[J]. Comptes Rendus Chimie,2004,7(2):65−90.  doi: 10.1016/j.crci.2004.02.002

    3. [3]

      SIANKEVICH S, SAVOGLIDIS G, FEI Z. A novel platinum nanocatalyst for the oxidation of 5-hydroxymethylfurfural into 2, 5-furandicarboxylic acid under mild conditions[J]. J Catal,2014,315(6):67−74.

    4. [4]

      CORMA A, IBORRA S, VELTY A. Chemical routes for the transformation of biomass into chemicals[J]. Chem Rev,2007,107(6):2411−2502.  doi: 10.1021/cr050989d

    5. [5]

      ROMÁN-LESHKOV Y, CHHEDA J N, DUMESIC J A. Phase modifiers promote efficient production of hydroxymethylfural from fructose[J]. Dumesic Sci,2006,312(5782):1933−1937.  doi: 10.1126/science.1126337

    6. [6]

      ZHAO H, HOLLADAY J E, BROWN H, ZHANG Z C. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural[J]. Science,2007,316(5831):1597−1600.  doi: 10.1126/science.1141199

    7. [7]

      SUN Z, CHENG M X, LI Z J, TIAN J, WANG X H. One pot production of 5-hydroxymethylfurfural with high yield from cellulose by a Brønsted-Lewis- surfactant-combined heteropolyacid catalyst[J]. Chem Commun,2011,47(7):2176−2178.  doi: 10.1039/c0cc04444j

    8. [8]

      STÅHLBERG T, FU W, WOODLEY J M, RIISAGER A. Synthesis of 5-(hydroxymethyl) furfural in ionic liquids: Paving the way to renewable chemicals[J]. ChemSusChem,2011,4(4):451−458.  doi: 10.1002/cssc.201000374

    9. [9]

      LAN J, LIN J, CHEN Z, YIN G. Transformation of 5-hydroxymethylfurfural (HMF) to maleic anhydride by aerobic oxidation with heteropolyacid catalysts[J]. ACS Catal,2015,5(4):2035−2041.  doi: 10.1021/cs501776n

    10. [10]

      PAL P, SARAVANAMURUGAN S. Recent advances in the development of 5-hydroxymethylfurfural oxidation with base (nonprecious)-metal-containing catalysts[J]. ChemSusChem,2018,12(1):145−163.

    11. [11]

      ZHANG Z, DENG K. Recent advances in the catalytic synthesis of 2, 5-furandicarboxylic acid and its derivatives[J]. ACS Catal,2015,5(11):6529−6544.  doi: 10.1021/acscatal.5b01491

    12. [12]

      ZHANG C, CHANG X, ZHU L, XING Q, YOU S, QI W, SU R, HE Z. Highly efficient and selective production of FFCA from CotA-TJ102 laccase-catalyzed oxidation of 5-HMF[J]. Int J Biol Macromol,2019,128(1):132−139.

    13. [13]

      GANDINI A, SILVESTRE A J D, NETO C P, SOUSA A F, GOMES M, The furan counterpart of poly(ethylene terephthalate): An alternative material based on renewable resources[J] J Polym Sci Pol Chem, 2009, 47 (1) 295−298.

    14. [14]

      XU J J, ZHU Z G, YUAN Z L, SUN T, ZHAO Y C, REN W Z, ZHANG Z H, LÜ H Y. Selective oxidation of 5-hydroxymethylfurfural to 5-formyl-2-furancar- boxylic acid over a Fe-Anderson type catalyst[J]. J Taiwan Inst Chem E,2019,104:8−15.

    15. [15]

      ZHU Y, ZHANG Y, CHENG L, ISMAEL M, FENG Z, WU Y. Novel application of g-C3N4/NaNbO3 composite for photocatalytic selective oxidation of biomass-derived HMF to FFCA under visible light irradiation[J]. Adv Powder Technol,2020,31(3):1148−1159.  doi: 10.1016/j.apt.2019.12.040

    16. [16]

      PAL P, KUMAR S, DEVI M M, SARAVANAMURUGAN S. Oxidation of 5-hydroxymethylfurfural to 5-formyl furan-2-carboxylic acid by non-precious transition metal oxide-based catalyst[J]. J Supercrit Fluids,2020,160(1):104−812.

    17. [17]

      VENTURA M, ARESTA M, DIBENEDETTO A. Selective aerobic oxidation of 5-(hydroxymethyl) furfural to 5-formyl-2-furancarboxylic acid in water[J]. ChemSusChem,2016,9(10):1096−1100.  doi: 10.1002/cssc.201600060

    18. [18]

      VENTURA M, LOBEFARO F, GIGLIO E, DISTASO M, NOCITO F, DIBENEDETTO A. Selective aerobic oxidation o 5-hydroxymethylfurfural to 2, 5-diformylfuran or 2-formyl-5-furancarboxylic acid in water by using MgO·CeO2 mixed oxides as catalysts[J]. ChemSusChem,2018,11(8):1305−1315.  doi: 10.1002/cssc.201800334

    19. [19]

      WANG H B. Synthesis, characterization and antibacterial activity of Schiff base containing adamantyl and Its Zinc complex[D]. Liaoning: Liaoning University, 2012.

    20. [20]

      JIN X D, WANG W C, FENG X X, BU L C, TONG J, ZHANG P, REN J K, ZHAO B X. Synthesis, characterization, crystal structure, and electrochemical property of copper(II) complexes with Schiff bases derived from 5-halogenated salicylaldehyde and amantadine[J]. J Coord Chem,2017,43(11):787−794.  doi: 10.1134/S1070328417110033

    21. [21]

      SHELDRICK G M. SHELXT-integrated space-group and cry-synthesis determination[J]. Acta Crystallogr A,2015,71(1):3−8.

    22. [22]

      JIN X D, KOU L, LIANG H M, TONG J, ZHANG P, HAN G C, REN J K, ZHAO B X. Syntheses and crystal structures of three copper(II) complexes with bulky Schiff bases derived from rimantadine[J]. J Coord Chem,2016,69(22):3309−3320.  doi: 10.1080/00958972.2016.1228910

    23. [23]

      KIM M, SU Y Q, FUKUOKA A, HENSEN E J M, NAKAJIMA K. Aerobic oxidation of 5-(hydroxymethyl) furfural cyclic acetal enables selective furan-2, 5-dicarboxylic acid formation with CeO2-supported gold catalyst[J]. Angew Chem Int Ed,2018,57(27):8235−8239.  doi: 10.1002/anie.201805457

    24. [24]

      RAO V K, PETER S. Oxidation of biomass derived 5-hydroxymethylfurfural using heterogeneous and electrochemical catalysis[J]. Catal Today, 2012, 195(1): 144−154.

    25. [25]

      REN Y S, LIU B, ZHANG Z H, LIN J T. Silver-exchanged heteropolyacid catalyst (Ag1H2PW): An efficient heterogeneous catalyst for the synthesis of 5-ethoxymethylfurfural from 5-hydroxymethylfurfural and fructose[J]. J Ind Eng Chem,2015,21(25):1127−1131.

    26. [26]

      JU E G, DONG K, CHEN Z W, LIU Z, LIU C Q, HUANG Y Y, WANG Z Z, PU F, REN J S, QU X G. Copper(ii) -graphitic carbon nitride triggered synergy: Improved ros generation and reduced glutathione levels for enhanced photodynamic therapy[J]. Angew Chem Int Ed,2016,55(38):11467−11471.  doi: 10.1002/anie.201605509

  • 加载中
    1. [1]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      Xiaotong LUPan ZHANGZijie ZHAOLei HUANGHongwei ZUOLili LIANG . Antitumor and antibacterial activities of pyridyl Schiff base indium and dysprosium complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1523-1532. doi: 10.11862/CJIC.20250073

    4. [4]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    5. [5]

      Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081

    6. [6]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    7. [7]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    8. [8]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    9. [9]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    10. [10]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    11. [11]

      Yuanyu YANGJianhua XUEYujia BAILulu CUIDongdong YANGQi MA . Design, synthesis, and detection of Al3+ of two zinc complexes based on Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1207-1216. doi: 10.11862/CJIC.20250005

    12. [12]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    13. [13]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    14. [14]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    15. [15]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    16. [16]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    17. [17]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    18. [18]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    19. [19]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    20. [20]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

Metrics
  • PDF Downloads(0)
  • Abstract views(379)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return