Citation: Wei-li FANG, Liang WANG, Chun-hu LI. Preparation of Au-OVs-BiOBr-P25 Z-scheme photocatalyst and its photocatalytic performance in overall water splitting[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(4): 446-455. doi: 10.1016/S1872-5813(21)60174-3 shu

Preparation of Au-OVs-BiOBr-P25 Z-scheme photocatalyst and its photocatalytic performance in overall water splitting

  • Corresponding author: Liang WANG, wangliang_good@163.com
  • Received Date: 12 August 2021
    Revised Date: 9 September 2021

Figures(11)

  • Z-scheme photocatalyst holds great promise in photocatalytic H2 evolution. In this work, a ternary Au-OVs-BiOBr-P25 Z-scheme photocatalyst with oxygen vacancies was successfully prepared, in which Au nanoparticles were used as the electron mediators to introduce into BiOBr and P25. The photocatalytic activity of this ternary photocatalyst was evaluated by overall water splitting. The H2 evolution rate of Au-OVs-BiOBr-P25 achieves an amazing value of 384 μmol/(g·h) under UV-vis irradiation. UV-vis DRS and transient photocurrent spectra revealed that the enhanced photocatalytic activity of Au-OVs-BiOBr-P25 was mainly attributed to its widened photo-response range and effective carrier separation. Furthermore, the photocatalytic mechanism was systematically studied by EPR and Photoelectrochemical measurements, which indicated that the overall water splitting occurred through the two-electron pathway. This result will provide us new ideas for developing more efficient photocatalysts for photocatalytic H2 evolution.
  • 加载中
    1. [1]

      FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature,1972,238(5358):37−38.  doi: 10.1038/238037a0

    2. [2]

      LIU J, LIU Y, LIU N Y, HAN Y Z, ZHANG X, HUANG H, LIFSHITZ Y, LEE S T, ZHONG J, KANG Z H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway[J]. Science,2015,347(6225):970−974.  doi: 10.1126/science.aaa3145

    3. [3]

      RAZIQ F, HE J X, GAN J T, HUMAYUN M, FAHEEM M B, IQBAL A, HAYAT A, FAZAL S, YI J B, ZHAO Y, DHANABALAN K, WU X Q, MAVLONOV A, ALI T, HASSAN F, XIANG X, ZU X T, SHEN H H, LI S A, QIAO L. Promoting visible-light photocatalytic activities for carbon nitride based 0D/2D/2D hybrid system: Beyond the conventional 4-electron mechanism[J]. Appl Catal B: Environ,2020,270:118870.  doi: 10.1016/j.apcatb.2020.118870

    4. [4]

      CAO S, CHAN T S, LU Y R, SHI X H, FU B, WU Z J, LI H M, LIU K, ALZUABI S, CHENG P, LIU M, LI T, CHEN X B, PIAO L Y. Photocatalytic pure water splitting with high efficiency and value by Pt/porous brookite TiO2 nanoflutes[J]. Nano Energy,2020,67:104287.  doi: 10.1016/j.nanoen.2019.104287

    5. [5]

      WANG L C, CAO S, GUO K, WU Z J, MA Z, PIAO L Y. Simultaneous hydrogen and peroxide production by photocatalytic water splitting[J]. Chin J Catal,2019,40(3):470−475.  doi: 10.1016/S1872-2067(19)63274-2

    6. [6]

      LOW J X, YU J G, JARONIEC M, WAGEH S, AL-GHAMDI A A. Heterojunction Photocatalysts[J]. Adv Mater,2017,29(20):1601694.  doi: 10.1002/adma.201601694

    7. [7]

      XU Q L, ZHANG L Y, YU J G, WAGEH S, AL-GHAMDI A A, JARONIEC M. Direct Z-scheme photocatalysts: Principles, synthesis, and applications[J]. Mater Today,2018,21(10):1042−1063.  doi: 10.1016/j.mattod.2018.04.008

    8. [8]

      NG B J, PUTRI L K, KONG X Y, PASBAKHSH P, CHAI S P. Z-scheme photocatalyst sheets with P-doped twinned Zn0.5Cd0.5S1-x and Bi4NbO8Cl connected by carbon electron mediator for overall water splitting under ambient condition[J]. Chem Eng J,2021,404:127030.  doi: 10.1016/j.cej.2020.127030

    9. [9]

      FU R R, ZENG X Q, MA L, GAO S M, WANG Q Y, WANG Z Y, HUANG B B, DAI Y, LU J. Enhanced photocatalytic and photoelectrochemical activities of reduced TiO2−x/BiOCl heterojunctions[J]. J Power Sources,2016,312:12−22.  doi: 10.1016/j.jpowsour.2016.02.038

    10. [10]

      REN X J, GAO M C, ZHANG Y F, ZHANG Z Z, CAO X Z, WANG B Y, WANG X X. Photocatalytic reduction of CO2 on BiOX: Effect of halogen element type and surface oxygen vacancy mediated mechanism[J]. Appl Catal B: Environ,2020,274:119063.  doi: 10.1016/j.apcatb.2020.119063

    11. [11]

      SHI M, LI G N, LI J M, JIN X, TAO X P, ZENG B, PIDKO E A, LI R G, LI C. Intrinsic facet-dependent reactivity of well-defined BiOBr nanosheets on photocatalytic water splitting[J]. Angew Chem Int Edit,2020,59(16):6590−6595.  doi: 10.1002/anie.201916510

    12. [12]

      XUE C, ZHANG T X, DING S J, WEI J J, YANG G D. Anchoring tailored low-index faceted BiOBr nanoplates onto TiO2 nanorods to enhance the stability and visible-light-driven catalytic activity[J]. ACS Appl Mater Inter,2017,9(19):16091−16102.  doi: 10.1021/acsami.7b00433

    13. [13]

      CHOI Y I, JEON K H, KIM H S, LEE J H, PARK S J, ROH J E, KHAN M M, SOHN Y. TiO2/BiOX (X = Cl, Br, I) hybrid microspheres for artificial waste water and real sample treatment under visible light irradiation[J]. Sep Purif Technol,2016,160:28−42.  doi: 10.1016/j.seppur.2016.01.009

    14. [14]

      RASHID J, ABBAS A, CHANG L C, IQBAL A, UL HAQ I, REHMAN A, AWAN S U, ARSHAD M, RAFIQUE M, BARAKAT M A. Butterfly cluster like lamellar BiOBr/TiO2 nanocomposite for enhanced sunlight photocatalytic mineralization of aqueous ciprofloxacin[J]. Sci Total Environ,2019,665:668−677.  doi: 10.1016/j.scitotenv.2019.02.145

    15. [15]

      OU G, XU Y S, WEN B, LIN R, GE B H, TANG Y, LIANG Y W, YANG C, HUANG K, ZU D, YU R, CHEN W X, LI J, WU H, LIU L M, LI Y D. Tuning defects in oxides at room temperature by lithium reduction[J]. Nat Commum,2018,9:1302.  doi: 10.1038/s41467-018-03765-0

    16. [16]

      RAJARAMAN TS, PARIKH S P, GANDHI V G. Black TiO2: A review of its properties and conflicting trends[J]. Chem Eng J,2020,389:123918.  doi: 10.1016/j.cej.2019.123918

    17. [17]

      WANG L, LV D D, DONG F, WU X L, CHENG N Y, SCOTT J, XU X, HAO W C, DU Y. Boosting visible-light-driven photo-oxidation of BiOCl by promoted charge separation via vacancy engineering[J]. ACS Sustainable Chem Eng,2019,7(3):3010−3017.  doi: 10.1021/acssuschemeng.8b04454

    18. [18]

      LI H, SHANG J, AI Z H, ZHANG L Z. Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets[J]. J Am Chem Soc,2015,137(19):6393−6399.  doi: 10.1021/jacs.5b03105

    19. [19]

      GAO Y Y, NIE W, ZHU Q H, WANG X, WANG S Y, FAN F T, LI C. The polarization effect in surface-plasmon-induced photocatalysis on Au/TiO2 nanoparticles[J]. Angew Chem Int Ed,2020,59(41):18218−18223.  doi: 10.1002/anie.202007706

    20. [20]

      MA B, BI J L, LV J, KONG C C, YAN P X, ZHAO X T, ZHANG X J, YANG T, YANG Z M. Inter-embedded Au-Cu2O heterostructure for the enhanced hydrogen production from water splitting under the visible light[J]. Chem Eng J,2021,405:126709.  doi: 10.1016/j.cej.2020.126709

    21. [21]

      LI X L, WANG T, TAO X Q, QIU G H, LI C, LI B X. Interfacial synergy of Pd sites and defective BiOBr for promoting the solar-driven selective oxidation of toluene[J]. J Mater Chem A,2020,8(34):17657−17669.  doi: 10.1039/D0TA05733A

    22. [22]

      LIAO Y, QIAN J, XIE G, HAN Q, DANG W Q, WANG Y S, LV L L, ZHAO S, LUO L, ZHANG W, JIANG H Y, TANG J W. 2D-layered Ti3C2 MXenes for promoted synthesis of NH3 on P25 photocatalysts[J]. Appl Catal B: Environ,2020,273:119054.  doi: 10.1016/j.apcatb.2020.119054

    23. [23]

      YU X, SHI J J, FENG L J, LI C H, WANG L. A three-dimensional BiOBr/RGO heterostructural aerogel with enhanced and selective photocatalytic properties under visible light[J]. Appl Surf Sci,2017,396:1775−1782.  doi: 10.1016/j.apsusc.2016.11.219

    24. [24]

      HU X L, LI C Q, SONG J Y, ZHENG S L, SUN Z M. Multidimensional assembly of oxygen vacancy-rich amorphous TiO2-BiOBr-sepiolite composite for rapid elimination of formaldehyde and oxytetracycline under visible light[J]. J Colloid Interf Sci,2020,574:61−73.  doi: 10.1016/j.jcis.2020.04.035

    25. [25]

      XU X Y, WANG Z Y, QIAO W, LUO F T, HU J G, WANG D H, ZHOU Y. Refined Z-scheme charge transfer in facet-selective BiVO4/Au/CdS heterostructure for solar overall water splitting[J]. Int J Hydrogen Energy,2021,46(12):8531−8538.  doi: 10.1016/j.ijhydene.2020.12.047

    26. [26]

      LI H B, LONG B, YE K H, CAI Y P, HE X Y, LAN Y Q, YANG Z J, JI H B. A recyclable photocatalytic tea-bag-like device model based on ultrathin Bi/C/BiOX (X = Cl, Br) nanosheets[J]. Appl Surf Sci,2020,515:145967.  doi: 10.1016/j.apsusc.2020.145967

    27. [27]

      ZHU G L, LIN T Q, LU X J, ZHAO W, YANG C Y, WANG Z, YIN H, LIU Z Q, HUANG F Q, LIN J H. Black brookite titania with high solar absorption and excellent photocatalytic performance[J]. J Mater Chem A,2013,1(34):9650−9653.  doi: 10.1039/c3ta11782k

    28. [28]

      WU J, LI X D, SHI W, LING P Q, SUN Y F, JIAO X C, GAO S, LIANG L, XU J Q, YAN W S, WANG C M, XIE Y. Efficient visible-light-driven CO2 reduction mediated by defect-engineered BiOBr atomic layers[J]. Angew Chem Int Ed,2018,57(28):8719−8723.  doi: 10.1002/anie.201803514

    29. [29]

      XUE X L, CHEN R P, CHEN H W, HU Y, DING Q Q, LIU Z T, MA L B, ZHU G Y, ZHANG W J, YU Q, LIU J, MA J, JIN Z. Oxygen vacancy engineering promoted photocatalytic ammonia synthesis on ultrathin two-dimensional bismuth oxybromide nanosheets[J]. Nano Letter,2018,18(11):7372−7377.  doi: 10.1021/acs.nanolett.8b03655

    30. [30]

      GUO Y, ZHANG Y, TIAN N, HUANG H. Homogeneous {001}-BiOBr/Bi heterojunctions: Facile controllable synthesis and morphology-dependent photocatalytic activity[J]. ACS Sustainable Chem Eng,2016,4(7):4003−4012.  doi: 10.1021/acssuschemeng.6b00884

    31. [31]

      BAI Y, CHEN T, WANG P Q, WANG L, YE L Q, SHI X, BAI W. Size-dependent role of gold in g-C3N4/BiOBr/Au system for photocatalytic CO2 reduction and dye degradation[J]. Solar Energy Mater Solar Cells,2016,157:406−414.  doi: 10.1016/j.solmat.2016.07.001

    32. [32]

      YAO Y, SUN M X, YUAN X J, ZHU Y H, LIN X J, ANANDAN S. One-step hydrothermal synthesis of N/Ti3+ co-doping multiphasic TiO2/BiOBr heterojunctions towards enhanced sonocatalytic performance[J]. Ultrasonics Sonochemistry,2018,49:69−78.  doi: 10.1016/j.ultsonch.2018.07.025

    33. [33]

      LIANG J W, LIU Y X, SI Z C, WEI G D, WENG D, KANG F Y. Graphene quantum dots piecing together into graphene on nano Au for overall water splitting[J]. Carbon,2021,178:265−272.  doi: 10.1016/j.carbon.2021.02.100

    34. [34]

      ZHANG W J, HU Y, YAN C Z, HONG D C, CHEN R P, XUE X L, YANG S Y, TIAN Y X, TIE Z X, JIN Z. Surface plasmon resonance enhanced direct Z-scheme TiO2/ZnTe/Au nanocorncob heterojunctions for efficient photocatalytic overall water splitting[J]. Nanoscale,2019,11(18):9053−9060.  doi: 10.1039/C9NR01732A

    35. [35]

      LIN B, YANG G D, WANG L Z. Stacking-layer-number dependence of water adsorption in 3D ordered close-packed g-C3N4 nanosphere arrays for photocatalytic hydrogen evolution[J]. Angew Chem Int Ed,2019,58(14):4587−4591.  doi: 10.1002/anie.201814360

    36. [36]

      CHOI C H, KIM M, KWON H C, CHO S J, YUN S, KIM H T, MAYRHOFER K J J, KIM H, CHOI M. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst[J]. Nat Commun,2016,7:1302.

  • 加载中
    1. [1]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    2. [2]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Chang LIUChao ZHANGTongbu LU . Small-size Au nanoparticles anchored on pyrenyl-graphdiyne for N2 electroreduction. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 174-182. doi: 10.11862/CJIC.20240305

    5. [5]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    6. [6]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    7. [7]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    8. [8]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    9. [9]

      Jianjun Fang Kunchen Xie Yongli Song Kangyi Zhang Fei Xu Xiaoze Shi Ming Ren Minzhi Zhan Hai Lin Luyi Yang Shunning Li Feng Pan . Break the capacity limit of Li4Ti5O12 anodes through oxygen vacancy engineering. Chinese Journal of Structural Chemistry, 2025, 44(2): 100504-100504. doi: 10.1016/j.cjsc.2024.100504

    10. [10]

      Entian CuiYulian LuZhaoxia LiZhilei ChenChengyan GeJizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288

    11. [11]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    12. [12]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    13. [13]

      Ji ChenYifan ZhaoShuwen ZhaoHua ZhangYouyu LongLingfeng YangMin XiZitao NiYao ZhouAnran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268

    14. [14]

      Lu Qi Zhaoyang Chen Xiaoyu Luan Zhiqiang Zheng Yurui Xue Yuliang Li . Atomically dispersed Mn enhanced catalytic performance for overall water splitting on graphdiyne-coated copper hydroxide nanowire. Chinese Journal of Structural Chemistry, 2024, 43(1): 100197-100197. doi: 10.1016/j.cjsc.2023.100197

    15. [15]

      Liang DongJingkuo QuTuo ZhangGuanghui ZhuNingning MaChang ZhaoYi YuanXiangjiu GuanLiejin Guo . MOF-derived NiCo bimetallic cocatalyst for enhanced photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(3): 110397-. doi: 10.1016/j.cclet.2024.110397

    16. [16]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    17. [17]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    18. [18]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    19. [19]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    20. [20]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

Metrics
  • PDF Downloads(0)
  • Abstract views(158)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return