Effects of TiO2 in Pd-TiO2/C for glycerol oxidation in a direct alkaline fuel cell
- Corresponding author: Santos Pereira Viviane, viviane_sp_saopaulo@yahoo.com.br
Citation:
Santos Pereira Viviane, Nandenha Júlio, Ramos Andrezza, Oliveira Neto Almir. Effects of TiO2 in Pd-TiO2/C for glycerol oxidation in a direct alkaline fuel cell[J]. Journal of Fuel Chemistry and Technology,
;2022, 50(4): 474-483.
doi:
10.1016/S1872-5813(21)60171-8
ONG C B, KAMARUDIN K S, BASRI S. Direct liquid fuel cells: A review[J]. Int J Hydrogen Energy,2017,42(15):10142−10457.
ANTOLINI E, GONZALEZ R E. Alkaline direct alcohol fuel cells[J]. J Power Sources,2010,195(11):3431−3450.
doi: 10.1016/j.jpowsour.2009.11.145
BANJONG J, THERDTHIANWONG A, THERDTHIANWONG S, YONGPRAGAT S, WONGYAO N. High performance alkaline-acid direct glycerol fuel cells for portable power supplies via electrode structure design[J]. Int J Hydrogen Energy,2020,45(3):2244−2256.
doi: 10.1016/j.ijhydene.2019.11.041
YAHYA N, KAMARUDIN S K, KARIM A N, MASDAR S M, LOH S K, LIM L K. Durability and performance of direct glycerol fuel cell with palladium-aurum/vapor grown carbon nanofiber support[J]. Energy Convers Manag,2019,188:120−130.
doi: 10.1016/j.enconman.2019.02.087
GERALDES N A, DA SILVA F D, SILVA A G L, SPINACÉ V E, NETO O A, DOS SANTOS C M. Binary and ternary palladium based electrocatalysts for alkaline direct glycerol fuel cell[J]. J Power Sources,2015,293:823−830.
doi: 10.1016/j.jpowsour.2015.06.010
KIM M, LEE C, KO M S, NAM M-J. Metal alloy hybrid nanoparticles with enhanced catalytic activities in fuel cell applications[J]. J Solid State Chem,2019,270:295−303.
doi: 10.1016/j.jssc.2018.11.014
SANTOS C B J, VIEIRA C, CRISAFULLI R, LINARES J J. Promotional effect of auxiliary metals Bi on Pt, Pd, and Ag on Au, for glycerol electrolysis[J]. Int J Hydrogen. Energy,2020,45(47):25658−25671.
doi: 10.1016/j.ijhydene.2019.11.225
NANDENHA J, FONTES H E, PIASENTIN M R, FONSECA C F, NETO O A. Direct oxidation of methane at low temperature using Pt/C, Pd/C, Pt/C-ATO and Pd/C-ATO electrocatalysts prepared by sodium borohydride reduction process[J]. J Fuel Chem Technol,2018,46(9):1137−1145.
doi: 10.1016/S1872-5813(18)30046-X
DASH S, MUNICHANDRAIAH N. Nanoflowers of PdRu on PEDOT for electrooxidation of glycerol and its analysis[J]. Electrochim Acta,2015,180:339−352.
doi: 10.1016/j.electacta.2015.07.020
HOUACHE E S M, SHUBAIR A, SANDOVAL G M, SAFARI R, BOTTON A G, JASEN V P, GONZÁLEZ A E, BARANOVA A E. Influence of Pd and Au on electrochemical valorization of glycerol over Ni-rich surfaces[J]. J Catal,2021,396:1−13.
doi: 10.1016/j.jcat.2021.02.008
VILLA A, DIMITRATOS N THAW-C E C, HAMMOND C, PRATI L, HUTCHING J G. Glycerol oxidation using old-containing catalysts[J]. Acc Chem Res.,2015,48:1403−1412.
doi: 10.1021/ar500426g
BENIPAL N, QI J, LIU Q, LI W. Carbon nanotube supported PdAg nanoparticles for electrocatalytic oxidation of glycerol in anion Exchange membrane fuel cells[J]. Appl Catal,2017,210:121−130.
doi: 10.1016/j.apcatb.2017.02.082
NANDENHA J, RAMOS C E D, DA SILVA G S, DE SOUZA R F B, FONTES H E, OTTONI C A, NETO A O. Borohydride reduction method for PdIn/C electrocatalysts synthesis towards glycerol electrooxidation under alkaline condition[J]. Eletroanalysis,2021,33(4):1115−1120.
doi: 10.1002/elan.202060322
ROSTAMI H, OMRANI A, ROSTAMI A A. On the role of electrodeposited nanostrutured Pd-Co alloy on Au for the electrocatalytic oxidation of glycerol in alcaline media[J]. Int J Hydrogen Energy,2015,40(30):9444−9451.
doi: 10.1016/j.ijhydene.2015.05.154
HAN J, KIM Y, KIM W H, JACKSON K H D, LEE D, CHANG H, CHAE J-H, LEE Y-K, KIM J H. Effect of atomic-layer-deposited TiO2 on carbono-supported Ni catalysts for electrocatalytic glycerol oxidation in alkaline media[J]. Electrochem Commun,2017,83:46−50.
doi: 10.1016/j.elecom.2017.08.023
SILVA M C J, BUZZO S G, DE SOUZA B F R, SPINACÉ V E, NETO O A, ASSUMPÇÃO T M H M. Enhanced eletrooxidation of ethanol using Pd/C + TiO2 electrocatalysts in alkaline media[J]. Electrocatalysis,2015,6:86−91.
doi: 10.1007/s12678-014-0224-z
HAN J, KIM Y, JACKSON K H D, JEONG E-K, CHAE J-H, LEE Y-K, KIM J-H. Role of Au-TiO2 interfacial sites in enchancing the electrocatalytic glycerol oxidation performance[J]. Electrochem Commun,2018,96:16−21.
doi: 10.1016/j.elecom.2018.09.004
DE SOUZA M F, DE SOUZA B F R, BATISTA L B, DOS SANTOS C M, FONSECA C F, NETO, O A, NANDENHA J. Methane activation at low temperature in an acidic electrolyte using PdAu/C, PdCu/C, and PdTiO2/C electrocatalysts for PEMFC[J]. Res Chem Intermed,2020,46:2481−2496.
doi: 10.1007/s11164-020-04102-1
DELGADO A J, CLAVER C, CASTILLÓN S, CURULLA-FERRÉ D, ORDOMSKY V V, GODARD C. Fisher-Tropsch synthesis catalyzed by small TiO2 supported cobalt nanoparticles prepared by sodium borohydride reduction[J]. Appl Catal A: Gen,2016,513:39−46.
doi: 10.1016/j.apcata.2015.12.019
KIRKLAND A I, HUTCHISON J L. Nanocharacterization[M]. RSC Publishing: Cambridge, 2007, 304-307.
RADMILOVIC V, GASTEIGER H A, ROSS P N. Structure and chemical composition of a supported Pt-Ru electrocatalysts for methanol oxidation[J]. J Catal,1995,154(1):98−106.
doi: 10.1006/jcat.1995.1151
ANTONIASSI M R, SILVA M C J, NETO O A, SPINACÉ V E. Synthesis of Pt+SnO2/C electrocatalysts containing Pt nanoparticles with preferential (100) orientation for direct ethanol fuel cell[J]. Appl Catal,2017,218:91−100.
doi: 10.1016/j.apcatb.2017.06.031
OTTONI A C, DE SOUZA R R, DA SILVA S G, SPINACÉ V E, DE SOUZA B F R, NETO O A. Performance of Pd electrocatalyst supported on a physical mixture Indium tin oxide-carbon for glycerol electro-oxidation in alkaline media[J]. Electroanalysis,2017,29:960−964.
doi: 10.1002/elan.201600569
NETO O A, NANDENHA J, DE SOUZA B F R, BUZZO S G, SILVA M C J, SPINACÉ V E, ASSUMPÇÃO T M H M. Anodic oxidation of formic acid on PdAuIr/C-Sb2O5. SnO2 electrocatalysts prepared by borohydride reduction[J]. J Fuel Chem Technol,2014,42(7):851−857.
doi: 10.1016/S1872-5813(14)60037-2
GERALDES N A, SILVA F D, SILVA M C J, SOUZA B F R, SPINACÉ V E, NETO O A, LINARDI M, SANTOS C M. Glycerol electrooxidation in alkaline medium using Pd/C, Au/C and PdAu/C electrocatalysts prepared by electron beam irradiation[J]. J Braz Chem Soc,2014,25(5):831−840.
SIMÕES M, BARANTON S, COUTANCEAU C. Electro-oxidation of glycerol at Pd based nano-catalysts for an application in alkaline fuel cells for chemicals and energy cogeneration[J]. Appl Catal,2010,93(3/4):354−362.
doi: 10.1016/j.apcatb.2009.10.008
GRDÉN M, CZERWINSKI A. EQCM studies on Pd-Ni alloy oxidation in basic solution[J]. J Solid State Electrochem,2008,12:375−385.
doi: 10.1007/s10008-007-0452-8
ZHIANI M, ROSTAMI H, MAJIDI S, KARAMI K. Bis (dibenzylidene acetone) palladium (O) catalysts for glycerol oxidation in half cell and in alkaline direct glycerol fuel cell[J]. Int J Hydrogen Energy,2013,38(13):5435−5441.
doi: 10.1016/j.ijhydene.2012.09.001
WINIWARTER A, SILVIOLI L, SCOTT B S, RASMUSSEN-E K, SARIÇ M, TRIMARCO B D, VESBORG K C P, MOSES G P, STEPHENS L E I, SEGER B, ROSSMEISL J, CHORKENDORFF I. Towards an atomistic understanding of electrocatalytic partial hydrocarbon oxidation: propene on palladium[J]. Energy Environ Sci,2019,12(3):1055−1067.
doi: 10.1039/C8EE03426E
GOMES F J, GARCIA C A, GASPAROTTO S H L, DE SOUZA E N, FERREIRA B E, PIRES C, FILHO-TREMILIOSI G. Influence of silver on the glycerol electro-oxidation over AuAg/C catalysts in alkaline medium: a cyclic voltammetry and in situ FTIR spectroscopy study[J]. Electrochim Acta,2014,144:361−368.
doi: 10.1016/j.electacta.2014.08.035
ZALINEEVA A, BARANTON S, COUTANCEAU C. How do Bi-modified palladium nanoparticles work toward glycerol electrooxidation? An in situ FTIT study[J]. Electrochim Acta,2015,176:705−717.
doi: 10.1016/j.electacta.2015.07.073
NANDENHA J, NAGAHAMA F H L, YAMASHITA Y J, FONTE H E, AYOUB S M J, DE SOUZA B F R, FONSECA C F, NETO O A. Activation of methane on PdZn/C electrocatalysts in an acidic electrolyte at low temperatures[J]. Int J Electrochem Sci,2019,14:10819−10834.
LAI L, HUANG G, WANG X WENG J. Preparation of Pt nanoparticle-loaded three-dimensional Fe3O4/carbon with high electro-oxidation activity[J]. Carbon,2011,49(5):1581−1587.
doi: 10.1016/j.carbon.2010.12.040
Linjie ZHU , Xufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207
Zhipeng Wan , Hao Xu , Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298
Zhiqiang Wang , Yajie Gao , Tianjun Wang , Wei Chen , Zefeng Ren , Xueming Yang , Chuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Maosen Xu , Pengfei Zhu , Qinghong Cai , Meichun Bu , Chenghua Zhang , Hong Wu , Youzhou He , Min Fu , Siqi Li , Xingyan Liu . In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524
Wenjing Dai , Lan Luo , Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442
Haoting Wang , Mengfan Luo , Yuzhong Wang , Jialong Yin , Heng Zhang , Jia Zhao , Bo Lai . Mn(Ⅱ) enhanced permanganate oxidation of trace organic pollutants in water: Critical role of in situ formation of colloidal MnO2. Chinese Chemical Letters, 2025, 36(6): 110348-. doi: 10.1016/j.cclet.2024.110348
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Yaping Wang , Pengcheng Yuan , Zeyuan Xu , Xiong-Xiong Liu , Shengfa Feng , Mufan Cao , Chen Cao , Xiaoqiang Wang , Long Pan , Zheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776
Xiaoyu Zhao , Kai Gao , Sen Xue , Wei Ran , Rui Liu . Synergistic effects of oxygen vacancies and Pd single atoms on Pd@TiO2−x for efficient HER catalysis. Chinese Chemical Letters, 2025, 36(6): 110309-. doi: 10.1016/j.cclet.2024.110309
Wenbiao Zhang , Bolong Yang , Zhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630
Guoliang Gao , Guangzhen Zhao , Guang Zhu , Bowen Sun , Zixu Sun , Shunli Li , Ya-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557
Hao Lv , Zhi Li , Peng Yin , Ping Wan , Mingshan Zhu . Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications. Chinese Chemical Letters, 2025, 36(1): 110457-. doi: 10.1016/j.cclet.2024.110457
Yang Liu , Jing Liang , Mengzhu Zheng , Haoze Song , Lixia Chen , Hua Li . PD-L1/SHP2 dual PROTACs inhibit melanoma by enhancing T-cell killing activity. Chinese Chemical Letters, 2025, 36(6): 110317-. doi: 10.1016/j.cclet.2024.110317
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
Xiaoxiao Huang , Zhi-Long He , Yangpeng Chen , Lei Li , Zhenyu Yang , Chunyang Zhai , Mingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271
Huiju Cao , Lei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466
Xinyu Hou , Xuelian Yu , Meng Liu , Hengxing Peng , Lijuan Wu , Libing Liao , Guocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845
Shiqi Peng , Yongfang Rao , Tan Li , Yufei Zhang , Jun-ji Cao , Shuncheng Lee , Yu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219
Tingting Liu , Pengfei Sun , Wei Zhao , Yingshuang Li , Lujun Cheng , Jiahai Fan , Xiaohui Bi , Xiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813