Citation: Yi LU, Ruo-wen LIANG, Gui-yang YAN, Zhi-yu LIANG, Wei-neng HU, Yu-zhou XIA, Ren-kun HUANG. Solvothermal synthesis of TiO2@MIL-101(Cr) for efficient photocatalytic fuel denitrification[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(4): 456-463. doi: 10.1016/S1872-5813(21)60170-6 shu

Solvothermal synthesis of TiO2@MIL-101(Cr) for efficient photocatalytic fuel denitrification

Figures(12)

  • Solvothermal synthesis technique is an effective method to create composite materials. In this paper, a series of TiO2@MIL-101(Cr) were prepared by the solvothermal method for photocatalytic denitrification of pyridine in fuel under visible light irradiation. The products were characterized by XRD, FT-IR, SEM, TEM, BET, DRS and ESR. The result shows that 20%TiO2@MIL-101(Cr) has high catalytic activity, the pyridine removal efficiency reaches values as high as 70% after irradiation for 240 min. Finally, we obtained the possible mechanism of photocatalytic denitrification according to the HPLC-MS spectrometry results analysis.
  • 加载中
    1. [1]

      YIN C. International law regulation of offshore oil and gas exploitation[J]. Environ Impact Assess Rev,2021,88:106551.

    2. [2]

      PRADO G H C, RAO Y, KLERK A. Nitrogen removal from oil: A review[J]. Energy Fuels,2016,31(1):14−36.

    3. [3]

      BHADRA B N, BAEK Y S, CHOI C H, JHUNG S H. How neutral nitrogen-containing compounds are oxidized in oxidative-denitrogenation of liquid fuel with TiO2@carbon[J]. Phys Chem Chem Phys,2021,23(14):8368−8374.  doi: 10.1039/D1CP00633A

    4. [4]

      DEESE R D, MORRIS R E, METZ A E, MYERS K M, JOHNSON K, LOEGEL T N. Characterization of organic nitrogen compounds and their impact on the stability of marginally stable diesel fuels[J]. Energy Fuels,2019,33(7):6659−6669.  doi: 10.1021/acs.energyfuels.9b00932

    5. [5]

      PAUCAR N E, KIGGINS P, BLAD B, DE JESUS K, AFRIN F, PASHIKANTI S, SHARMA K. Ionic liquids for the removal of sulfur and nitrogen compounds in fuels: A review[J]. Environ Chem Lett,2021,19(2):1205−1228.  doi: 10.1007/s10311-020-01135-1

    6. [6]

      JURY M R. Meteorology of air pollution in Los Angeles[J]. Atmospheric Pollut Res,2020,11(7):1226−1237.  doi: 10.1016/j.apr.2020.04.016

    7. [7]

      LIANG R, HUANG R, WANG X, YING S, YAN G, WU L. Functionalized MIL-68(In) for the photocatalytic treatment of Cr(VI)-containing simulation wastewater: Electronic effects of ligand substitution[J]. Appl Surf Sci,2019,464:396−403.  doi: 10.1016/j.apsusc.2018.09.100

    8. [8]

      ALVARO M, CARBONELL E, FERRER B, LLABRES I XAMENA F X, GARCIA H. Semiconductor behavior of a metal-organic framework (MOF)[J]. Chem Eur J,2007,13(18):5106−51112.  doi: 10.1002/chem.200601003

    9. [9]

      DHAKSHINAMOORTHY A, LI Z, GARCIA H. Catalysis and photocatalysis by metal organic frameworks[J]. Chem Soc Rev,2018,47(22):8134−8172.  doi: 10.1039/C8CS00256H

    10. [10]

      GAO P, LIU R, HUANG H, JIA X, PAN H. MOF-templated controllable synthesis of α-Fe2O3 porous nanorods and their gas sensing properties[J]. RSC Adv,2016,6(97):94699−94705.  doi: 10.1039/C6RA21567J

    11. [11]

      LI Q, WU J, HUANG L, GAO J, ZHOU H, SHI Y, PAN Q, ZHANG G, DU Y, LIANG W. Sulfur dioxide gas-sensitive materials based on zeolitic imidazolate framework-derived carbon nanotubes[J]. J Mater Chem A,2018,6(25):12115−12124.  doi: 10.1039/C8TA02036A

    12. [12]

      CUI Y F, JIANG W, LIANG S, ZHU L F, YAO Y W. MOF-derived synthesis of mesoporous In/Ga oxides and their ultra-sensitive ethanol-sensing properties[J]. J Mater Chem A,2018,6(30):14930−14938.  doi: 10.1039/C8TA00269J

    13. [13]

      FANG Y, MA Y, ZHENG M, YANG P, ASIRI A M, WANG X. Metal-organic frameworks for solar energy conversion by photoredox catalysis[J]. Coord Chem Rev,2018,373:83−115.  doi: 10.1016/j.ccr.2017.09.013

    14. [14]

      YUAN S, FENG L, WANG K, PANG J, BOSCH M, LOLLAR C, SUN Y, QIN J, YANG X, ZHANG P, WANG Q, ZOU L, ZHANG Y, ZHANG L, FANG Y, LI J, ZHOU H C. Stable metal-organic frameworks: Design, synthesis, and applications[J]. Adv Mater,2018,30(37):e1704303.  doi: 10.1002/adma.201704303

    15. [15]

      XUE D-X, WANG Q, BAI J. Amide-functionalized metal-organic frameworks: Syntheses, structures and improved gas storage and separation properties[J]. Coord Chem Rev,2019,378:2−16.  doi: 10.1016/j.ccr.2017.10.026

    16. [16]

      YING M, TANG R, YANG W, LIANG W, YANG G, PAN H, LIAO X, HUANG J. Tailoring electronegativity of bimetallic Ni/Fe metal-organic framework nanosheets for electrocatalytic water oxidation[J]. ACS Appl Nano Mater,2021,4(2):1967−1975.  doi: 10.1021/acsanm.0c03310

    17. [17]

      LIANG R, HUANG R, YING S, WANG X, YAN G, WU L. Facile in situ growth of highly dispersed palladium on phosphotungstic-acid-encapsulated MIL-100(Fe) for the degradation of pharmaceuticals and personal care products under visible light[J]. J Nano Res,2017,11(2):1109−1123.

    18. [18]

      WANG C-C, DU X-D, LI J, GUO X-X, WANG P, ZHANG J. Photocatalytic Cr(VI) reduction in metal-organic frameworks: A mini-review[J]. App Catal B: Environ,2016,193:198−216.  doi: 10.1016/j.apcatb.2016.04.030

    19. [19]

      KHAN N A, JHUNG S H. Phytic acid-encapsulated MIL-101(Cr): Remarkable adsorbent for the removal of both neutral indole and basic quinoline from model liquid fuel[J]. Chem Eng J,2019,375.

    20. [20]

      GUO Q, ZHOU C, MA Z, YANG X. Fundamentals of TiO2 photocatalysis: Concepts, mechanisms, and challenges[J]. Adv Mater,2019,31(50):1901997.  doi: 10.1002/adma.201901997

    21. [21]

      FUJIMOTO T M, PONCZEK M, ROCHETTO U L, LANDERS R, TOMAZ E. Photocatalytic oxidation of selected gas-phase VOCs using UV light, TiO2, and TiO2/Pd[J]. Environ Sci Pollut Res Int,2017,24(7):6390−6396.  doi: 10.1007/s11356-016-6494-7

    22. [22]

      LIN J Y, LEE J, WEN D O, KWON E, LIN K. Hierarchical zif-decorated nanoflower-covered 3-dimensional foam for enhanced catalytic reduction of nitrogen-containing contaminants[J]. J Colloid Interface Sci 2021, 602: 95-104.

    23. [23]

      HU W, YAN G, LIANG R, JIANG M, HUANG R, XIA Y, CHEN L, LU Y. Construction of a novel step-scheme CdS/Pt/Bi2MoO6 photocatalyst for efficient photocatalytic fuel denitrification[J]. RSC Adv,2021,11(38):23288−23300.  doi: 10.1039/D1RA04417F

    24. [24]

      LIANG R, LIANG I, CHEN F, XIE P, WV Y, WANG X, YAN G, WV L. Sodium dodecyl sulfate-decorated MOF-derived porous Fe2O3 nanoparticles: High performance, recyclable photocatalysts for fuel denitrification[J]. Chin J Catal,2020,41(1):188−199.

    25. [25]

      HUANG R, LIANG R, FAN H, YING S, WU L, WANG X, YAN G. Enhanced Photocatalytic fuel denitrification over TiO2/alpha-Fe2O3 nanocomposites under visible light irradiation[J]. Sci Rep,2017,7(1):7858.  doi: 10.1038/s41598-017-08439-3

  • 加载中
    1. [1]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    2. [2]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    3. [3]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    4. [4]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    5. [5]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    6. [6]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    7. [7]

      Xinyue HanYunhan YangJiayin LuYuxiang LinDongxue ZhangLing LinLiang Qiao . Efficient serum lipids profiling by TiO2-dopamin-assisted MALDI-TOF MS for breast cancer detection. Chinese Chemical Letters, 2025, 36(5): 110183-. doi: 10.1016/j.cclet.2024.110183

    8. [8]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    9. [9]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    10. [10]

      Xing Xiao Yunling Jia Wanyu Hong Yuqing He Yanjun Wang Lizhi Zhao Huiqin An Zhen Yin . Sulfur-defective ZnIn2S4 nanosheets decorated by TiO2 nanosheets with exposed {001} facets to accelerate charge transfer for efficient photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100474-100474. doi: 10.1016/j.cjsc.2024.100474

    11. [11]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    12. [12]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    13. [13]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

    14. [14]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    15. [15]

      Jiangqi Ning Junhan Huang Yuhang Liu Yanlei Chen Qing Niu Qingqing Lin Yajun He Zheyuan Liu Yan Yu Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453

    16. [16]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    17. [17]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    18. [18]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    19. [19]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    20. [20]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

Metrics
  • PDF Downloads(0)
  • Abstract views(229)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return