Citation: Zheng-wei WANG, Bao-yong WEI, Jian-nan LÜ, Yi-ming WANG, Yun-fei WU, He YANG, Hao-quan HU. In-situ catalytic upgrading of tar from integrated process of coal pyrolysis with steam reforming of methane over carbon based Ni catalyst[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(2): 129-142. doi: 10.1016/S1872-5813(21)60169-X shu

In-situ catalytic upgrading of tar from integrated process of coal pyrolysis with steam reforming of methane over carbon based Ni catalyst

  • Corresponding author: Hao-quan HU, hhu@dlut.edu.cn
  • Received Date: 23 April 2021
    Revised Date: 11 May 2021

Figures(14)

  • In order to improve the tar quality by decreasing the heavy tar content and ensuring high tar yield, in-situ catalytic upgrading of tar from the integrated process of coal pyrolysis coupled with steam reforming of methane was conducted over carbon (KD-9) based Ni catalyst. The results show that at 650 °C, the tar yield of CP-SRM over 5Ni/KD-9 is 24.4%, which is a little lower than that of without catalyst, while the light tar yield (i.e.,18.9%) is 1.4 times higher than that of without catalyst, and the content of C2, C3 and C4 alkyl used as a substitute for benzene significantly increases tar yields by 0.5, 0.6 and 4.0 times, respectively. The content of phenols and naphthalenes in tar also increases dramatically after upgrading. Isotope tracer approach combined with the mass spectra of typical components was employed in exploring the mechanism of the upgrading process. The results show that 5Ni/KD-9 catalyzes coal tar cracking and SRM at the same time. Small free radicals such as ·CHx, ·H and ·OH generated by SRM can combine with free radicals from tar cracking, thus avoiding excessive cracking of tar.
  • 加载中
    1. [1]

      LI W, WANG H, LI X, LIANG Y, WANG Y, ZHANG H. Effect of mixed cationic/anionic surfactants on the low-rank coal wettability by an experimental and molecular dynamics simulation[J]. Fuel,2021,289:119886.  doi: 10.1016/j.fuel.2020.119886

    2. [2]

      JIAN Y, LI X, ZHU X, ASHIDA R, WORASUWANNARAK N, HU Z, LUO G, YAO H, ZHONG M, LIU J, MA F, MIURA K. Interaction between low-rank coal and biomass during degradative solvent extraction[J]. J Fuel Chem Technol,2019,47(1):14−22.  doi: 10.1016/S1872-5813(19)30003-9

    3. [3]

      HE Z, SUN Y, CHENG S, JIA Z, TU R, WU Y, SHEN X, ZHANG F, JIANG E, XU X. The enhanced rich H2 from co-gasification of torrefied biomass and low rank coal: The comparison of dry/wet torrefaction, synergetic effect and prediction[J]. Fuel,2021,287:119473.  doi: 10.1016/j.fuel.2020.119473

    4. [4]

      FAN Y, ZHANG S, LI X, XU J, WU Z, YANG B. Process intensification on suspension pyrolysis of ultra-fine low-rank pulverized coal via conveyor bed on pilot scale: Distribution and characteristics of products[J]. Fuel,2021,286:119341.  doi: 10.1016/j.fuel.2020.119341

    5. [5]

      LI T, WANG Q, SHEN Y, JIN X, KONG J, WANG M, CHANG L. Effect of filter media on gaseous tar reaction during low-rank coal pyrolysis[J]. J Fuel Chem Technol,2021,49(03):257−264.

    6. [6]

      ZHANG K, WU Y, WANG D, JIN L, HU H. Synergistic effect of co-pyrolysis of pre-dechlorination treated PVC residue and Pingshuo coal[J]. J Fuel Chem Technol: 1-9[2021-05-21]. http://kns.cnki.net/kcms/detail/14.1140.TQ.20210413.1003.045.html.

    7. [7]

      CAO S, WANG D, WANG M, ZHU J, JIN L, LI Y, HU H. In-situ upgrading of coal pyrolysis tar with steam catalytic cracking over Ni/Al2O3 catalysts[J]. ChemistrySelect,2020,5(16):4905−4912.  doi: 10.1002/slct.202000476

    8. [8]

      FU D, LI X, LI W, FENG J. Catalytic upgrading of coal pyrolysis products over bio-char[J]. Fuel Process Technol,2018,176:240−248.  doi: 10.1016/j.fuproc.2018.04.001

    9. [9]

      ZHAO J, CAO J, WEI F, ZHAO X, FENG X, HUANG X, ZHAO M, WEI X. Sulfation-acidified HZSM-5 catalyst for in-situ catalytic conversion of lignite pyrolysis volatiles to light aromatics[J]. Fuel,2019,255:115784.  doi: 10.1016/j.fuel.2019.115784

    10. [10]

      LIU P, LE J, ZHANG D, WANG S, PAN T. Free radical reaction mechanism on improving tar yield and quality derived from lignite after hydrothermal treatment[J]. Fuel,2017,207:244−252.  doi: 10.1016/j.fuel.2017.06.081

    11. [11]

      KAN T, SUN X, WANG H, LI C, MUHAMMAD U. Production of gasoline and diesel from coal tar via its catalytic hydrogenation in serial fixed beds[J]. Energy Fuels,2012,26(6):3604−3611.  doi: 10.1021/ef3004398

    12. [12]

      MAJKA M, TOMASZEWICZ G, MIANOWSKI A. Experimental study on the coal tar hydrocracking process over different catalysts[J]. J Energy Inst,2018,91(6):1164−1176.  doi: 10.1016/j.joei.2017.06.007

    13. [13]

      JIN L, BAI X, LI Y, DONG C, HU H, LI X. In-situ catalytic upgrading of coal pyrolysis tar on carbon-based catalyst in a fixed-bed reactor[J]. Fuel Process Technol,2016,147:41−46.  doi: 10.1016/j.fuproc.2015.12.028

    14. [14]

      LEI Z, HAO S, YANG J, LEI Z, DAN X. Study on solid waste pyrolysis coke catalyst for catalytic cracking of coal tar[J]. Int J Hydrogen Energy,2020,45(38):19280−19290.  doi: 10.1016/j.ijhydene.2020.05.075

    15. [15]

      WEI B, JIN L, WANG D, SHI H, HU H. Catalytic upgrading of lignite pyrolysis volatiles over modified HY zeolites[J]. Fuel,2020,259:116234.  doi: 10.1016/j.fuel.2019.116234

    16. [16]

      LIU J, HU H, JIN L, WANG P, ZHU S. Integrated coal pyrolysis with CO2 reforming of methane over Ni/MgO catalyst for improving tar yield[J]. Fuel Process Technol,2010,91(4):419−423.  doi: 10.1016/j.fuproc.2009.05.003

    17. [17]

      DONG C, JIN L, LI Y, ZHOU Y, ZOU L, HU H. Integrated Process of coal pyrolysis with steam reforming of methane for improving the tar yield[J]. Energy Fuels,2014,28(12):7377−7384.  doi: 10.1021/ef501796a

    18. [18]

      WU Y, LI Y, JIN L, HU H. Integrated process of coal pyrolysis with steam reforming of ethane for improving the tar yield[J]. Energy Fuels,2018,32(12):12268−12276.  doi: 10.1021/acs.energyfuels.8b02964

    19. [19]

      JIANG H, WANG M, LI Y, JIN L, HU H. Integrated coal pyrolysis with steam reforming of propane to improve tar yield[J]. J Anal Appl Pyrolysis,2020,147:104805.  doi: 10.1016/j.jaap.2020.104805

    20. [20]

      WANG P, JIN L, LIU J, ZHU S, HU H. Isotope analysis for understanding the tar formation in the integrated process of coal pyrolysis with CO2 reforming of methane[J]. Energy Fuels,2010,24(8):4402−4407.  doi: 10.1021/ef100637k

    21. [21]

      JIN L, XIE T, MA B, LI Y, HU H. Preparation of carbon-Ni/MgO-Al2O3 composite catalysts for CO2 reforming of methane[J]. Int J Hydrogen Energy,2017,42(8):5047−5055.  doi: 10.1016/j.ijhydene.2016.11.130

    22. [22]

      NAWFAL M, GENNEQUIN C, LABAKI M, NSOULI B, ABOUKAÏS A, ABI-AAD E. Hydrogen production by methane steam reforming over Ru supported on Ni-Mg-Al mixed oxides prepared via hydrotalcite route[J]. Int J Hydrogen Energy,2015,40(2):1269−1277.  doi: 10.1016/j.ijhydene.2014.09.166

    23. [23]

      ZHAN Y, LI D, NISHIDA K, SHISHIDO T, OUMI Y, SANO T, TAKEHIRA K. Preparation of “intelligent” Pt/Ni/Mg(Al)O catalysts starting from commercial Mg-Al LDHs for daily start-up and shut-down steam reforming of methane[J]. Appl Clay Sci,2009,45(3):147−154.  doi: 10.1016/j.clay.2009.05.002

    24. [24]

      COMAS J, DIEUZEIDE M L, BARONETTI G, LABORDE M, AMADEO N. Methane steam reforming and ethanol steam reforming using a Ni(II)-Al(III) catalyst prepared from lamellar double hydroxides[J]. Chem Eng J,2006,118(1):11−15.

    25. [25]

      FONSECA A, ASSAF E M. Production of the hydrogen by methane steam reforming over nickel catalysts prepared from hydrotalcite precursors[J]. J Power Sources,2005,142(1):154−159.

    26. [26]

      WANG M, JIN L, LI Y, LV J, WEI B, HU H. In-situ catalytic upgrading of coal pyrolysis tar coupled with CO2 reforming of methane over Ni-based catalysts[J]. Fuel Process Technol,2018,177:119−128.  doi: 10.1016/j.fuproc.2018.04.022

    27. [27]

      WANG M, JIN L, ZHAO H, YANG X, LI Y, HU H, BAI Z. In-situ catalytic upgrading of coal pyrolysis tar over activated carbon supported nickel in CO2 reforming of methane[J]. Fuel,2019,250:203−210.  doi: 10.1016/j.fuel.2019.03.153

    28. [28]

      BLANCO P H, WU C, ONWUDILI J A, WILLIAMS P T. Characterization and evaluation of Ni/SiO2 catalysts for hydrogen production and tar reduction from catalytic steam pyrolysis-reforming of refuse derived fuel[J]. Appl Catal B: Environ,2013,134−135:238−250.  doi: 10.1016/j.apcatb.2013.01.016

    29. [29]

      RASTEGARPANAH A, MESHKANI F, REZAEI M. Thermocatalytic decomposition of methane over mesoporous nanocrystalline promoted Ni/MgO·Al2O3 catalysts[J]. Int J Hydrogen Energy,2017,42(26):16476−16488.  doi: 10.1016/j.ijhydene.2017.05.044

    30. [30]

      CHENG S, WEI L, ZHAO X, KADIS E, CAO Y, JULSON J, GU Z. Hydrodeoxygenation of prairie cordgrass bio-oil over Ni based activated carbon synergistic catalysts combined with different metals[J]. New Biotechnol,2016,33(4):440−448.  doi: 10.1016/j.nbt.2016.02.004

    31. [31]

      YAN L, KONG X, ZHAO R, LI F, XIE K. Catalytic upgrading of gaseous tars over zeolite catalysts during coal pyrolysis[J]. Fuel Process Technol,2015,138:424−429.  doi: 10.1016/j.fuproc.2015.05.030

    32. [32]

      YAN L, BAI Y, LIU Y, HE Y, LI F. Effects of low molecular compounds in coal on the catalytic upgrading of gaseous tar[J]. Fuel,2018,226:316−321.  doi: 10.1016/j.fuel.2018.03.191

    33. [33]

      IGLESIAS M J, CUESTA M J, SUÁREZ-RUIZ I. Structure of tars derived from low-temperature pyrolysis of pure vitrinites: influence of rank and composition of vitrinites[J]. J Anal Appl Pyrolysis,2001,58−59:255−284.  doi: 10.1016/S0165-2370(00)00140-6

    34. [34]

      MORGAN T J, GEORGE A, DAVIS D B, HEROD A A, KANDIYOTI R. Optimization of 1H and 13C NMR methods for structural characterization of acetone and pyridine soluble/insoluble fractions of a coal tar pitch[J]. Energy Fuels,2008,22(3):1824−1835.  doi: 10.1021/ef700715w

    35. [35]

      DABBAGH H A, SHI B, DAVIS B H, HUGHES C G. Deuterium incorporation during coal liquefaction in donor and nondonor solvents[J]. Energy Fuels,1994,8(1):219−226.  doi: 10.1021/ef00043a034

    36. [36]

      CRONAUER D C, MCNEIL R I, YOUNG D C, RUBERTO R G. Hydrogen/deuterium transfer in coal liquefaction[J]. Fuel,1982,61(7):610−619.  doi: 10.1016/0016-2361(82)90005-9

    37. [37]

      DI M, WANG M, JIN L, LI Y, HU H. In-situ catalytic cracking of coal pyrolysis tar coupled with steam reforming of ethane over carbon based catalyst[J]. Fuel Process Technol,2020,209:106551.  doi: 10.1016/j.fuproc.2020.106551

  • 加载中
    1. [1]

      Junchuan Sun Lu Wang . Carbon exchange enabled supra-photothermal methane dry reforming. Chinese Journal of Structural Chemistry, 2024, 43(10): 100330-100330. doi: 10.1016/j.cjsc.2024.100330

    2. [2]

      Junhua WangXin LianXichuan CaoQiao ZhaoBaiyan LiXian-He Bu . Dual polarization strategy to enhance CH4 uptake in covalent organic frameworks for coal-bed methane purification. Chinese Chemical Letters, 2024, 35(8): 109180-. doi: 10.1016/j.cclet.2023.109180

    3. [3]

      Junqi WangShuai ZhangJingjing MaXiangjun LiuYayun MaZhimin FanJingfeng Wang . Augmenting levoglucosan production through catalytic pyrolysis of biomass exploiting Ti3C2Tx MXene. Chinese Chemical Letters, 2024, 35(12): 109725-. doi: 10.1016/j.cclet.2024.109725

    4. [4]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    5. [5]

      Xingyu MaYi-Xin ChenZi YeChong-Jing Zhang . Isotope-labeled click-free probes to identify protein targets of lysine-targeting covalent reversible molecules. Chinese Chemical Letters, 2025, 36(5): 110203-. doi: 10.1016/j.cclet.2024.110203

    6. [6]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    7. [7]

      Feng-Qing HuangYu WangJi-Wen WangDai YangShi-Lei WangYuan-Ming FanRaphael N. AlolgaLian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670

    8. [8]

      Feng CaoChunxiang XianTianqi YangYue ZhangHaifeng ChenXinping HeXukun QianShenghui ShenYang XiaWenkui ZhangXinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575

    9. [9]

      Junhao DaiZhu HeXinhai LiGuochun YanHui DuanGuangchao LiZhixing WangHuajun GuoWenjie PengJiexi Wang . Ultrafast spray pyrolysis for synthesizing uniform Mg-doped LiNi0.9Co0.05Mn0.05O2. Chinese Chemical Letters, 2025, 36(6): 110063-. doi: 10.1016/j.cclet.2024.110063

    10. [10]

      Jun ZhangZhiyao ZhengCan Zhu . Stereochemical editing: Catalytic racemization of secondary alcohols and amines. Chinese Chemical Letters, 2024, 35(5): 109160-. doi: 10.1016/j.cclet.2023.109160

    11. [11]

      Xingfen HuangJiefeng ZhuChuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783

    12. [12]

      Jinqiang GaoHaifeng YuanXinjuan DuFeng DongYu ZhouShengnan NaYanpeng ChenMingyu HuMei HongShihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232

    13. [13]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    14. [14]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    15. [15]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    16. [16]

      Jian Ji Jie Yan Honggen Peng . Modulation of dinuclear site by orbital coupling to boost catalytic performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100360-100360. doi: 10.1016/j.cjsc.2024.100360

    17. [17]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    18. [18]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    19. [19]

      Yu YaoJinqiang ZhangYantao WangKunsheng HuYangyang YangZhongshuai ZhuShuang ZhongHuayang ZhangShaobin WangXiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633

    20. [20]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

Metrics
  • PDF Downloads(0)
  • Abstract views(300)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return