Citation: Shuai GUO, Shi-xiang YU, De-yong CHE, Hong-peng LIU, Bai-zhong SUN. Migration characteristics of heavy metals during co-combustion of dehydrated sludge with straw[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(3): 283-294. doi: 10.1016/S1872-5813(21)60168-8 shu

Migration characteristics of heavy metals during co-combustion of dehydrated sludge with straw

  • Corresponding author: Bai-zhong SUN, sunbaizhong@126.com
  • Received Date: 26 July 2021
    Revised Date: 9 September 2021

Figures(10)

  • Sludge incineration technology has significant advantages such as capacity reduction and energy utilization, but it will cause heavy metal pollution. Therefore, the co-combustion of dewatered sludge with corn straw at 700−850 ℃ was studied in a laboratory scale internal circulating fluidized bed. The effects of different temperature, sludge mixing ratio and secondary air ratio on the NO emission and the migration of different heavy metals in bottom ash, fly ash and flue gas after co-combustion were examined. The results show that under the experimental conditions, with the increase in temperature, the NO emission concentration increases, and the concentrations of V, Cr, As, Sb and Hg first increase and then decrease in the bottom ash, while the concentrations of Zn, Cu, Se and Cd vary to the contrary. The turning point of most heavy metals concentration is at 800 ℃. However, with the increase in the sludge mixing ratio, the NO emission concentration first decreases and then increases, and the Cu, Hg and Tl concentrations all increase first and then decrease in the bottom ash, while the Cr concentration change is the opposite, with turning points all at the sludge mixing ratio of 10%. Also, with the increase in the secondary air ratio, the NO emission concentration decreases, and the Zn, Cu, Se and Hg concentrations in bottom ash decrease, on the contrary, the As and Cd concentrations increase.
  • 加载中
    1. [1]

      CAO Mei-ying, PAN Hong-xia. Analysis of the status quo of urban sewage treatment and improvement measures[J]. Intell Build Constr Mach,2019,1(7):99−101.

    2. [2]

      ZHAO Yu-chen, WANG Lei. Chinese Society For Environmental Sciences. 2020 Proceedings of Science and Technology Annual Meeting of Chinese Society for Environmental Sciences (Vol. 2)[C]. Nanjin: Chinese Soc For Environ Sci, 2020. 5.

    3. [3]

      GUO Jia-lei, XIAO Yi-fan, LI Xiao-yan, WANG Jie. Study on disposal method of solid waste sludge in sewage treatment[J]. Recyclable Resour Circular Eco,2021,14(2):39−40.  doi: 10.3969/j.issn.1674-0912.2021.02.015

    4. [4]

      WANG Y G, LIU Y, YANG W J, ZHAO Q X, DAI Y J. Evaluation of combustion properties and pollutant emission characteristics of blends of sewage sludge and biomass[J]. Sci Total Environ,2020,720:137−365.

    5. [5]

      ZHU Dong, XU Ying. Research status and development trend of municipal sludge treatment technology at home and abroad[J]. Sci Chin,2017,(20):279.

    6. [6]

      FU B, LIU G J, MIAN M M, ZHOU C C, SUN M, WU D, LIU Y. Co-combustion of industrial coal slurry and sewage sludge: Thermochemical and emission behavior of heavy metals[J]. Chemosphere,2019,233:440−451.  doi: 10.1016/j.chemosphere.2019.05.256

    7. [7]

      CHEN Hong-xia. Research progress of domestic sludge treatment and disposal technology[J]. Shanxi Chem Ind,2021,41(1):190−192.

    8. [8]

      WEI Liang, JIN Xing, MA Li-ping. Research progress on treatment and disposal technology of surplus sludge in sewage treatment plant[J]. Agr Technol,2021,41(8):8106−8108.

    9. [9]

      CHEN L M, LIAO Y F, MA X Q, LU S G. Heavy metals chemical speciation and environmental risk of bottom slag during co-combustion of municipal solid waste and sewage sludge[J]. J Cleaner Prod,2020,262:121−318.

    10. [10]

      WANG T, XUE Y J, ZHOU M, LIANG A N, LIU J X, MEI M, LAO X B, HOU H B, LI J P. Effect of addition of rice husk on the fate and speciation of heavy metals in the bottom ash during dyeing sludge incineration[J]. J Cleaner Prod,2020,244:118−851.

    11. [11]

      ZHANG S, WANG F, MEI Z Y, LV L K, CHI Y. Status and development of sludge incineration in China[J]. Waste Biomass Valorizat,2020,12(7):3541−3574.

    12. [12]

      LIN K S, KUO J H, LIN C L, LIU Z S, LIU J Y. Sequential extraction for heavy metal distribution of bottom ash from fluidized bed co-combusted phosphorus-rich sludge under the agglomeration/defluidization process[J]. Waste Manage Res,2020,38(2):122−133.  doi: 10.1177/0734242X19886927

    13. [13]

      ZHA J R, HUANG Y J, PETER T CLOUGH, DONG L, XU L G, LIU L Q, ZHU Z C, YU M Z. Desulfurization using limestone during sludge incineration in a fluidized bed furnace: Increased risk of particulate matter and heavy metal emissions[J]. Fuel,2020,273:117−614.

    14. [14]

      PENIDO E S, MARTINS G C, MENDES T B M, MELO L C A, GUIMARAES I D R, GUILHERME L R G. Combining biochar and sewage sludge for immobilization of heavy metals in mining soils[J]. Ecotoxicol Environ Saf,2019,172:326−333.  doi: 10.1016/j.ecoenv.2019.01.110

    15. [15]

      LIU H P, ZHANG S Q, FENG S Y, JIA C X, GUO S, SUN B Z, WANG Q. Combustion characteristics and typical pollutant emissions of corn stalk blending with municipal sewage sludge[J]. Environ Sci Pollut Res,2021,28(8):9792−9805.  doi: 10.1007/s11356-020-11463-y

    16. [16]

      JIN Y Y, LI Y Y, LIU F Q. Combustion effects and emission characteristics of SO2, CO, NOx and heavy metals during co-combustion of coal and dewatered sludge[J]. Frontiers of Environ Sci Eng,2016,10(1):201−210.  doi: 10.1007/s11783-014-0739-9

    17. [17]

      ZHAN M X, SUN C, CHEN T, LI X D. Emission characteristics for co-combustion of leather wastes, sewage sludge, and coal in a laboratory-scale entrained flow tube furnace[J]. Environ Sci Pollut Res,2019,26(10):9707−9716.  doi: 10.1007/s11356-019-04347-3

    18. [18]

      ZHANG S R, JIANG X G, LV G J, WU L, LI W, WANG Y F, FANG C Q, JIN Y Q, YAN J H. Co-combustion of Shenmu coal and pickling sludge in a pilot scale drop-tube furnace: Pollutants emissions in flue gas and fly ash[J]. Fuel Process Technol,2019,184:57−64.  doi: 10.1016/j.fuproc.2018.11.009

    19. [19]

      GUO F H, ZHONG Z P, XUE H. Partition of Zn, Cd, and Pb during co-combustion of sedum plumbizincicola and sewage sludge[J]. Chemosphere,2018,197:50−56.  doi: 10.1016/j.chemosphere.2018.01.021

    20. [20]

      CHEN L M, LIAO Y F, MA X Q. Heavy metals volatilization characteristics and risk evaluation of co-combusted municipal solid wastes and sewage sludge without and with calcium-based sorbents[J]. Ecotoxicol Environ Saf,2019,182:109−370.

    21. [21]

      ZHAO Y, JIA H, REN Q. The Characteristics of zinc and arsenic from Co-firing of municipal sewage sludge with biomass in a fluidized bed[J]. Energy Fuels,2016,31(1):755−762.

    22. [22]

      DONG Hao. Study on co-combustion characteristics of tannery sludge with coal and fate of chromium in fluidized bed incinerator[D]. Zhejiang: Zhejiang University, 2018.

    23. [23]

      ZHANG Lin, ZHOU Guo-shun, GUO Zhen-ning, ZHONG Wen-qi, XU Peng-cheng. Application and pollutant emission characteristics of sludge co-incineration[J]. Chem Eng Equip,2020,,(12):7−8.

    24. [24]

      (LIU Zhi-qiang, LIU Qing, JIANG Wen-bin, XIAO Feng, LU Jun-fu. The effect of the emission in circulating fluidized bed boilers[J]. Boiler Technol,2013,44(3):23−27.  doi: 10.3969/j.issn.1672-4763.2013.03.006

    25. [25]

      ZHANG Ying-wen, JIN Jing, ZHANG Hao, LIU Wei, ZHAO Qing-qing. LIU Lei. Experimental study on property of NOx emission during combustion of sludge[J]. J Univ Shanghai Sci Technol,2015,37(3):233−237.

    26. [26]

      SÄNGER M, WERTHER J, OGADA T. NOx and N2O emission characteristics from fluidised bed combustion of semi-dried municipal sewage sludge[J]. Fuel (Guildford),2001,80(2):167−177.  doi: 10.1016/S0016-2361(00)00093-4

    27. [27]

      WANG S J, HE P J, SHAO L M, ZHANG H. Multifunctional effect of Al2O3, SiO2 and CaO on the volatilization of PbO and PbCl2 during waste thermal treatment[J]. Chemosphere,2016,161:242−250.  doi: 10.1016/j.chemosphere.2016.07.020

    28. [28]

      ZHOU H, SUN J, MENG A H, LI Q H, ZHANG Y G. Effects of sorbents on the partitioning and speciation of Cu during municipal solid waste incineration[J]. Chin J Chem Eng,2014,22(11/12):1347−1351.  doi: 10.1016/j.cjche.2014.09.030

    29. [29]

      HUANG Q X, CAI X, ALHADJ MALLAH M M, CHI Y, YAN J H. Effect of HCl/SO2/NH3/O2 and mineral sorbents on the partitioning behaviour of heavy metals during the thermal treatment of solid wastes[J]. Environ technol,2015,36(23):3043−3049.  doi: 10.1080/09593330.2014.963693

    30. [30]

      FOLGUERAS M B, DIAZ R M, XIBERTA J, ALONSO M. Effect of inorganic matter on trace element behavior during combustion of coal-sewage sludge blends[J]. Energy Fuels,2007,21(2):744−755.  doi: 10.1021/ef060536r

    31. [31]

      HALL B, LINDQVIST O, LJUNGSTROEM E. Mercury chemistry in simulated flue gases related to waste incineration conditions[J]. Environ Sci Technol,1990,24(1):108−111.  doi: 10.1021/es00071a013

    32. [32]

      WU C J, DUAN Y F, ZHAO C S, WANG Y J, WANG Q, YANG L G, JIANG Y M. Mercury emission from Co-combustion of coal and sludge in a circulating fluidized-bed incinerator[J]. Energy Fuels,2010,24(1):220−224.  doi: 10.1021/ef900565c

  • 加载中
    1. [1]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    2. [2]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    3. [3]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    4. [4]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    5. [5]

      Xiaoyu Cao Wenchang Ke Xin Tian Luxuan Lin Yiru Zhuo Xinhang Li Dongxu Chen ChunhuiWu Yu Pei Jiaxing Yin Xiaohui Zhang Xuegao Qin Jiangyi Zhou Baoqiang Su Pingping Zhu . Polymers from the Perspective of Students: A Debate on “Is White Pollution the Fault of Plastics?”. University Chemistry, 2025, 40(4): 160-165. doi: 10.12461/PKU.DXHX202412106

    6. [6]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    7. [7]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    8. [8]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    9. [9]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    10. [10]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    11. [11]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    12. [12]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    13. [13]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    14. [14]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    15. [15]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    16. [16]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    17. [17]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    18. [18]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    19. [19]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    20. [20]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

Metrics
  • PDF Downloads(0)
  • Abstract views(1554)
  • HTML views(210)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return