Nickel oxide modified C3N5 photocatalyst for enhanced hydrogen evolution performance
- Corresponding author: Lian DUAN, duanlian@tyut.edu.cn Xian LIU, liuxian1104@126.com
Citation:
Mu-yao LIU, Jian-yun WANG, Lian DUAN, Xian LIU, Lei ZHANG. Nickel oxide modified C3N5 photocatalyst for enhanced hydrogen evolution performance[J]. Journal of Fuel Chemistry and Technology,
;2022, 50(2): 243-249.
doi:
10.1016/S1872-5813(21)60166-4
LIAO G F, GONG Y, ZHANG L, GAO H Y, YANG G J, FANG B Z. Semiconductor polymeric graphitic carbon nitride photocatalysts: the “holy grail” for the photocatalytic hydrogen evolution reaction under visible light[J]. Energy Environ Sci,2019,12(7):2080−2147.
doi: 10.1039/C9EE00717B
HU B, CAI F P, CHEN T J, FAN M S, SONG C J, SHI W D. Hydrothermal synthesis g-C3N4/nano-InVO4 nanocomposites and enhanced photocatalystic activity for hydrogen production under visible light irradiation[J]. ACS Appl Mater Interfaces,2015,7(33):18247−18256.
doi: 10.1021/acsami.5b05715
MAO Z Y, CHEN J J, YANG Y F, WANG D J, BIE L J, FAHLMAN B D. Novel g-C3N4/CoO nanocomposites with significantly enhanced visible-light photocatalytic activity for H2 evolution[J]. ACS Appl Mater Interfaces,2017,9(14):12427−12435.
doi: 10.1021/acsami.7b00370
YE S, WANG R, WU M Z, YUAN Y P. A review on g-C3N4 for photocatalytic water splitting and CO2 reduction[J]. Appl Surf Sci,2015,358:15−17.
doi: 10.1016/j.apsusc.2015.08.173
LI M L, ZHANG L X, FAN X Q, ZHOU Y J, WU M Y, SHI J L. Highly selective CO2 photoreduction to CO over g-C3N4/Bi2WO6 composites under visible light[J]. J Mater Chem A,2015,3(9):5189−5196.
doi: 10.1039/C4TA06295G
FENG W H, ZHANG L X, FANG J Z, LU S Y, WU S X, CHEN Y, FANG Z Q. Improved photodegradation efficiency of 2, 4-DCP through a combined Q3Fe(III)-decorated porous g-C3N4/H2O2 system[J]. Water Air Soil Poll,2017,228(9):373.
doi: 10.1007/s11270-017-3564-5
QIAN X F, WU Y W, KAN M, FANG M Y, YUE D T, ZENG J, ZHAO Y X. FeOOH quantum dots coupled g-C3N4 for visible light driving photo- Fenton degradation of organic pollutants[J]. Appl Catal B: Environ,2018,237:513−520.
doi: 10.1016/j.apcatb.2018.05.074
CUI Y J, ZHANG G G, LIN Z Z, WANG X C. Condensed and low-defected graphitic carbon nitride with enhanced photocatalytic hydrogen evolution under visible light irradiation[J]. Appl Catal B: Environ,2016,181:413−419.
doi: 10.1016/j.apcatb.2015.08.018
DONG G H, ZHAO K, ZHANG L Z. Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4[J]. Chem Commun,2012,48:6178−6180.
doi: 10.1039/c2cc32181e
WANG H Y, LI M X, LU Q J, CEN Y M, ZHANG Y Y, YAO S Z. A mesoporous rod-like g-C3N5 synthesized by salt-guided strategy: as a superior photocatalyst for degradation of organic pollutant[J]. ACS Sustainable Chem Eng,2019,7(1):625−631.
doi: 10.1021/acssuschemeng.8b04182
QI S Y, FAN Y C, WANG J R, SONG X H, LI W F, ZHAO M W. Metal-free highly efficient photocatalysts for overall water splitting: C3N5 multilayers[J]. Nanoscale,2020,12(1):306−315.
doi: 10.1039/C9NR08416A
KUMAR P, VAHIDZADEH E, THAKUR U K, KAR P, ALAM K M, GOSWAMI A, MANDI N, CUI K, BERNARD G M, MICHAELIS V K, SHANKAR K. C3N5: A low band gap semiconductor containing an azo-linked carbon nitride framework for photocatalytic, photovoltaic and adsorbent applications[J]. J Am Chem Soc,2019,141(13):5415−5436.
doi: 10.1021/jacs.9b00144
JIN Z B, WEI T T, HUANG J Y, LI F Y, YANG Y, XU L. Fabrication of direct Z-scheme heterojunction between Zn0.5Cd0.5S and N-rich graphite carbon nitride for boosted H2 production[J]. Int J Hydrogen Energy,2020,45(43):22711−22721.
doi: 10.1016/j.ijhydene.2020.06.093
VADIVEL S, HARIGANESH S, PAUL B, MAMBA G, PUVIARASU P. Highly active novel CeTi2O6/g-C3N5 photocatalyst with extended spectral response towards removal of endocrine disruptor 2, 4-dichlorophenol in aqueous medium[J]. Colloids Surf A,2020,592(5):124583.
LI M X, LU Q J, LIU M L, YIN P, WU C Y, LI H T, ZHANG Y Y, YAO S Z. Photoinduced charge separation via the double-electron transfer mechanism in nitrogen vacancies g-C3N5/BiOBr for the photoelectrochemical nitrogen reduction[J]. ACS Appl Mater Interfaces,2020,12(34):38266−38274.
doi: 10.1021/acsami.0c11894
SHI H L, BI J G, BAI C P, WU J B, XU Y, HAN Y, ZHANG X. Nickel ammine complex-derived NiO modified g-C3N4 composites with enhanced visible-light photocatalytic H2 evolution performance[J]. ChemistrySelect,2019,4(27):8095−8103.
doi: 10.1002/slct.201901813
LIU J N, JIA Q H, LONG J L, WANG X X, GAO Z W, GU Q. Amorphous NiO as co-catalyst for enhanced visible-light-driven hydrogen generation over g-C3N4 photocatalyst[J]. Appl Catal B: Environ,2018,222:35−43.
doi: 10.1016/j.apcatb.2017.09.073
HU C, TENG H. Structural features of p-type semiconducting NiO as a co-catalyst for photocatalytic water splitting[J]. J Catal,2010,272(1):1−8.
doi: 10.1016/j.jcat.2010.03.020
CHEN C, LIAO C, HSU K, WU Y, WU J. P-N junction mechanism on improved NiO/TiO2 photocatalyst[J]. Catal Commun,2011,12(14):1307−1310.
doi: 10.1016/j.catcom.2011.05.009
LIN H, CHEN Y, CHEN Y. Water splitting reaction on NiO/InVO4 under visible light irradiation[J]. Int J Hydrogen Energy,2007,32(1):86−92.
doi: 10.1016/j.ijhydene.2006.04.007
SREETHAWONG T, SUZUKI Y, YOSHIKAWA S. Photocatalytic evolution of hydrogen over mesoporous supported NiO photocatalyst prepared by single-step sol-gel process with surfactant template[J]. Int J Hydrogen Energy,2005,30(10):1053−1062.
doi: 10.1016/j.ijhydene.2004.09.007
IWASZUK A, NOLAN M, JIN Q, FUJISHIMA M, TADA H. Origin of the visible-light response of nickel(II) oxide cluster surface modified titanium(IV) dioxide[J]. J Phys Chem C,2013,117(6):2709−2718.
doi: 10.1021/jp306793r
FU Y, LIU C A, ZHU C, WANG H, DOU Y, SHI W, SHAO M, HUANG H, LIU Y, KANG Z. High-performance NiO/g-C3N4 composites for visible-light-driven photocatalytic overall water splitting[J]. Inorg Chem Front,2018,5(7):1646−1652.
doi: 10.1039/C8QI00292D
TZVETKOV G, TSVETKOV M, SPASSOV T. Ammonia-evaporation-induced construction of three-dimensional NiO/g-C3N4 composite with enhanced adsorption and visible light-driven photocatalytic performance[J]. Superlattice Microst,2018,119:122−133.
doi: 10.1016/j.spmi.2018.04.048
LIU T, YANG G, WANG W, WANG C, WANG M, SUN X, XU P, ZHANG J. Preparation of C3N5 nanosheets with enhanced performance in photocatalytic methylene blue (MB) degradation and H2-evolution from water splitting[J]. Environ Res,2020,188:109741.
doi: 10.1016/j.envres.2020.109741
LUO B, SONG R, GENG J, JING D, ZHANG Y. Facile preparation with high yield of a 3D porous graphitic carbon nitride for dramatically enhanced photocatalytic H2 evolution under visible light[J]. Appl Catal B: Environ,2018,238(15):294−301.
LIN X, XU D, ZHENG J, SONG M, CHE G, WANG Y, YANG Y, LIU C, ZHAO L, CHANG L. Graphitic carbon nitride quantum dots loaded on leaf-like InVO4/BiVO4 nano-heterostructures with enhanced visible-light photocatalytic activity[J]. J Alloys Compd,2016,688(15):891−898.
WANG X, MA Z, CHAI L, XU L, ZHU Z, HU Y, QIAN J, HUANG S. MOF derived N-doped carbon coated CoP particle/carbon nanotube composite for efficient oxygen evolution reaction[J]. Carbon,2019,141:643−651.
doi: 10.1016/j.carbon.2018.10.023
KONG L, DONG Y, JIANG P, WANG G, ZHANG H, ZHAO N. Light-assisted rapid preparation of a Ni/g-C3N4 magnetic composite for robust photocatalytic H2 evolution from water[J]. J Mater Chem A,2016,4(25):9998−10007.
doi: 10.1039/C6TA03178A
HAN Q, WANG B, ZHAO Y, HU C, QU L. A graphitic-C3N4 “seaweed” architecture for enhanced hydrogen evolution[J]. Angew Chem Int Ed,2015,54(39):11433−11437.
doi: 10.1002/anie.201504985
JIANG Z, CHEN X, LU J, LI Y, WEN T, ZHANG L. Ultrathin Ni(II)-based coordination polymer nanosheets as a co-catalyst for promoting photocatalytic H2 production[J]. Chem Commun,2019,55(46):6499.
doi: 10.1039/C9CC02680K
WEN J, XIE J, ZHANG H, ZHANG A, LIU Y, CHEN X, LI X. Constructing multifunctional metallic Ni interface layers in the g-C3N4 nanosheets/amorphous NiS heterojunctions for efficient photocatalytic H2 generation[J]. ACS Appl Mater Interfaces,2017,9(16):14031−14042.
doi: 10.1021/acsami.7b02701
Fei ZHOU , Xiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236
Min ZHU , Yuxin WANG , Xiao LI , Yaxu XU , Junwen ZHU , Zihao WANG , Yu ZHU , Xiaochen HUANG , Dan XU , Monsur Showkot Hossain Abul . Construction of AgVO3/ZIF-8 composites for enhanced degradation of tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 994-1006. doi: 10.11862/CJIC.20240392
Jun LI , Huipeng LI , Hua ZHAO , Qinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401
Wenda WANG , Jinku MA , Yuzhu WEI , Shuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353
Huirong LIU , Hao XU , Dunru ZHU , Junyong ZHANG , Chunhua GONG , Jingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
Kaihui Huang , Boning Feng , Xinghua Wen , Lei Hao , Difa Xu , Guijie Liang , Rongchen Shen , Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204
Fengjun Deng , Tingyu Zhao , Xiaochen Zhang , Kaiyong Feng , Ze Liu , Youlin Xiang , Yingjian Yu . Reduced graphene oxide assembled on the Si nanowire anode enabling low passivation and hydrogen evolution for long-life aqueous Si-air batteries. Chinese Chemical Letters, 2025, 36(6): 109897-. doi: 10.1016/j.cclet.2024.109897
Guixu Pan , Zhiling Xia , Ning Wang , Hejia Sun , Zhaoqi Guo , Yunfeng Li , Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463
Jiao Li , Chenyang Zhang , Chuhan Wu , Yan Liu , Xuejian Zhang , Xiao Li , Yongtao Li , Jing Sun , Zhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782
Minying Wu , Xueliang Fan , Wenbiao Zhang , Bin Chen , Tong Ye , Qian Zhang , Yuanyuan Fang , Yajun Wang , Yi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258
Xinyu Hou , Xuelian Yu , Meng Liu , Hengxing Peng , Lijuan Wu , Libing Liao , Guocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845
Bowen Li , Ting Wang , Ming Xu , Yuqi Wang , Zhaoxing Li , Mei Liu , Wenjing Zhang , Ming Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467
Xinlong Zheng , Zhongyun Shao , Jiaxin Lin , Qizhi Gao , Zongxian Ma , Yiming Song , Zhen Chen , Xiaodong Shi , Jing Li , Weifeng Liu , Xinlong Tian , Yuhao Liu . Recent advances of CuSbS2 and CuPbSbS3 as photocatalyst in the application of photocatalytic hydrogen evolution and degradation. Chinese Chemical Letters, 2025, 36(3): 110533-. doi: 10.1016/j.cclet.2024.110533
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Xia ZHANG , Yushi BAI , Xi CHANG , Han ZHANG , Haoyu ZHANG , Liman PENG , Shushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255