Citation: Feng LI, Yun-hui LIAO, Ning ZHAO, Fu-kui XIAO. The effect of NaF amount on solid base catalysts derived from F-Ca-Mg-Al layered double hydroxides and dimethyl carbonate synthesis[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(1): 80-89. doi: 10.1016/S1872-5813(21)60165-2 shu

The effect of NaF amount on solid base catalysts derived from F-Ca-Mg-Al layered double hydroxides and dimethyl carbonate synthesis

  • Corresponding author: Feng LI, lifeng2729@sxicc.ac.cn
  • Received Date: 16 June 2021
    Revised Date: 7 July 2021
    Accepted Date: 14 July 2021

Figures(8)

  • Versatile and environmentally benign dimethyl carbonate (DMC) synthesized by propylene carbonate (PC) and methanol via transesterification is green and energy efficient. A series of solid base catalysts derived from F-Ca-Mg-Al layered double hydroxides (LDHs) with different NaF amount were prepared, characterized and tested for the transesterification reaction. The properties of the catalysts modified by fluorine have improved obviously. The catalytic activity increases in the order of: FCMA-0.8 > FCMA-0.4 > FCMA-1.2 > FCMA-1.6 > FCMA-0, which is consistent with the total basic sites amount and the strong basic sites amount. FCMA-0.8 has the best catalytic activity as pure CaO catalyst, and the PC conversion, DMC selectivity and DMC yield are 66.8%, 97.4% and 65.1%, respectively. Furthermore, the DMC yield for FCMA-0.8 just decreased 3.9% (33.2% for CaO catalyst) after 10 recycles. FCMA-0.8 has good prospects in the transesterification of PC with methanol to DMC for industrial application.
  • 加载中
    1. [1]

      TUNDO P, SELVA M. The chemistry of dimethyl carbonate[J]. ACC Chem Res,2002,35(9):706−716.  doi: 10.1021/ar010076f

    2. [2]

      CROCELLA V, TABANELLI T, VITILLO J. G, COSTENARO D, BISIO C, CAVANI F, BORDIGA S. A multi-technique approach to disclose the reaction mechanism of dimethyl carbonate synthesis over amino-modified SBA-15 catalysts[J]. Appl Catal B: Environ,2017,211:323−336.  doi: 10.1016/j.apcatb.2017.04.013

    3. [3]

      TUNDO P, MUSOLINO M, ARICO F. The reactions of dimethyl carbonate and its derivatives[J]. Green Chem,2018,20(1):28−85.  doi: 10.1039/C7GC01764B

    4. [4]

      WANG D F, ZHANG X L, MA J, YU H W, SHEN J Z, WEI W. La-modified mesoporous Mg-Al mixed oxides: effective and stable base catalysts for the synthesis of dimethyl carbonate from methyl carbamate and methanol[J]. Catal Sci Technol,2016,6(5):1530−1545.  doi: 10.1039/C5CY01712B

    5. [5]

      HUANG S Y, YAN B, WANG S P, MA X B. Recent advances in dialkyl carbonates synthesis and applications[J]. Chem Soc Rev,2015,44(10):3079−3116.  doi: 10.1039/C4CS00374H

    6. [6]

      SAADA R, KELLICI S, HEILI T, MORGAN D, SAHA B. Greener synthesis of dimethyl carbonate using a novel ceria-zirconia oxide/grapheme nanocomposite catalyst[J]. Appl Catal B: Environ,2015,168−169:353−362.

    7. [7]

      TAMBOLI A H, CHAUGULE A A, KIM H. Catalytic developments in the direct dimethyl carbonate synthesis from carbon dioxide and methanol[J]. Chem Eng J,2017,323:530−544.  doi: 10.1016/j.cej.2017.04.112

    8. [8]

      FIORANI G, PEROSA A, SELVA M. Dimethyl carbonate: A versatile reagent for a sustainable valorization of renewables[J]. Green Chem,2018,20(2):288−322.  doi: 10.1039/C7GC02118F

    9. [9]

      SRIVASTAVA R, SRINIVAS D, RATNASAMY P. Fe-Zn double-metal cyanide complexes as novel, solid transesterification catalysts[J]. J Catal,2006,241(1):34−44.  doi: 10.1016/j.jcat.2006.04.002

    10. [10]

      XU J, WU H T, MA C M, XUE B, LI Y X, CAO Y. Ionic liquid immobilized on mesocellular silica foam as an efficient heterogeneous catalyst for the synthesis of dimethyl carbonate via transesterification[J]. Appl Catal A: Gen,2013,464–465:357−363.

    11. [11]

      MURUGAN C, BAJAJ H C, JASRA R V. Transesterification of propylene carbonate by methanol using KF/Al2O3 as an efficient base catalyst[J]. Catal Lett,2010,137:224−231.  doi: 10.1007/s10562-010-0348-6

    12. [12]

      GAO Y, XU C. Synthesis of dimethyl carbonate over waste eggshell catalyst[J]. Catal Today,2012,190(1):107−111.  doi: 10.1016/j.cattod.2011.12.004

    13. [13]

      WANG H, WANG M H, ZHAO N, WEI W, SUN Y H. CaO-ZrO2 solid solution: A highly stable catalyst for the synthesis of dimethyl carbonate from propylene carbonate and methanol[J]. Catal Lett,2005,105:253−257.  doi: 10.1007/s10562-005-8699-0

    14. [14]

      WANG H, WANG M H, LIU S G, ZHAO N, WEI W, SUN Y H. Influence of preparation methods on the structure and performance of CaO-ZrO2 catalyst for the synthesis of dimethyl carbonate via transesterification[J]. J Mol Catal A,2006,258(1-2):308−312.  doi: 10.1016/j.molcata.2006.05.050

    15. [15]

      WEI T, WANG M H, WEI W, SUN Y H, ZHONG B. Synthesis of dimethyl carbonate by transesterification over CaO/carbon composites[J]. Green Chem,2003,5(3):343−346.  doi: 10.1039/b210716n

    16. [16]

      LIAO Y H, LI F, DAI X, ZHAO N, XIAO F K. Solid base catalysts derived from Ca-M-Al (M = Mg, La, Ce, Y) layered double hydroxides for dimethyl carbonate synthesis by transesterification of methanol with propylene carbonate[J]. Chin J Catal,2017,38(11):1860−1869.  doi: 10.1016/S1872-2067(17)62898-5

    17. [17]

      LIAO Y H, LI F, PU Y F, WANG F, DAI X, ZHAO N, XIAO F K. Solid base catalysts derived from Ca-Al-X (X = F-, Cl- and Br-) layered double hydroxides for methanolysis of propylene carbonate[J]. RSC Adv,2018,8(2):785−791.  doi: 10.1039/C7RA10832J

    18. [18]

      LIAO Y H, LI F, DAI X, ZHAO N, XIAO F K. Dimethyl carbonate synthesis over solid base catalysts derived from Ca-Al layered double hydroxides[J]. Chem Pap,2018,72:1963−1971.  doi: 10.1007/s11696-018-0408-8

    19. [19]

      XU S L, CHEN Z R, ZHANG B W, YU J H, ZHANG F. Z, EVANS D G. Facile preparation of pure CaAl-layered double hydroxides and their application as a hardening accelerator in concrete[J]. Chem Eng J,2009,155(3):881−885.  doi: 10.1016/j.cej.2009.08.003

    20. [20]

      KOCIK J, HAJEK M, TROPPOVA I. The factors influencing stability of Ca-Al mixed oxides as a possible catalyst for biodiesel production[J]. Fuel Process Technol,2015,134:297−302.  doi: 10.1016/j.fuproc.2015.02.013

    21. [21]

      HAN M S, LEE B G, AHN B S, PARK K Y, HONG S I. Kinetics of dimethyl carbonate synthesis from ethylene carbonate and methanol using alkali-metal compounds as catalysts[J]. React Kinet Catal Lett,2001,73:33−38.  doi: 10.1023/A:1013904317108

    22. [22]

      OESTREICHER V, JOBBAGY M. One pot synthesis of Mg2Al(OH)6Cl·1.5H2O layered double hydroxides: the epoxide route[J]. Langmuir,2013,29(39):12104−12109.  doi: 10.1021/la402260m

    23. [23]

      ANGELESCU E, PAVEL O D, BIRJEGA R, FLOREA M, ZAVOIANU R. The impact of the “memory effect” on the catalytic activity of Mg/Al; Mg, Zn/Al; Mg/Al, Ga hydrotalcite-like compounds used as catalysts for cycloxene epoxidation[J]. Appl Catal A: Gen,2008,341(1/2):50−57.  doi: 10.1016/j.apcata.2007.12.022

    24. [24]

      BEHRENS M, KASATKIN I, KUHL S, WEINBERG G. Phase-pure Cu, Zn, Al hydrotalcite-like materials as precursors for copper rich Cu/ZnO/Al2O3 catalysts[J]. Chem Mater,2010,22(2):386−397.

    25. [25]

      KUMAR P, SRIVASTAVA V C, MISHRA I M. Dimethyl carbonate synthesis from propylene carbonate with methanol using Cu-Zn-Al catalyst[J]. Energy Fuels,2015,29(4):2664−2675.  doi: 10.1021/ef502856z

    26. [26]

      WU G D, WANG X L, WEI W, SUN Y H. Fluorine-modified Mg-Al mixed oxides: A solid base with variable basic sites and tunable basicity[J]. Appl Catal A: Gen,2010,377(1/2):107−113.  doi: 10.1016/j.apcata.2010.01.023

    27. [27]

      WEI T, WANG M H, WEI W, SUN Y H, ZHONG B. Effect of base strength and basicity on catalytic behavior of solid bases for synthesis of dimethyl carbonate from propylene carbonate and methanol[J]. Fuel Process Technol,2003,83(1/3):175−182.  doi: 10.1016/S0378-3820(03)00065-1

  • 加载中
    1. [1]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    2. [2]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    3. [3]

      Ruofan QiJing ZhangWang SunBai YuZhenhua WangKening Sun . Solid-acid-Lewis-base interaction accelerates lithium ion transport for uniform lithium deposition. Chinese Chemical Letters, 2025, 36(6): 110009-. doi: 10.1016/j.cclet.2024.110009

    4. [4]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    5. [5]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    6. [6]

      Jinqiang GaoHaifeng YuanXinjuan DuFeng DongYu ZhouShengnan NaYanpeng ChenMingyu HuMei HongShihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232

    7. [7]

      Kaili WangPengcheng LiuMingzhe WangTianran WeiJitao LuXingling ZhaoZaiyong JiangZhimin YuanXijun LiuJia He . Modulating d-d orbitals coupling in PtPdCu medium-entropy alloy aerogels to boost pH-general methanol electrooxidation performance. Chinese Chemical Letters, 2025, 36(4): 110532-. doi: 10.1016/j.cclet.2024.110532

    8. [8]

      Fenglin WangChengwei KuangZhicheng ZhengDan WuHao WanGen ChenNing ZhangXiaohe LiuRenzhi Ma . Noble metal clusters substitution in porous Ni substrate renders high mass-specific activities toward oxygen evolution reaction and methanol oxidation reaction. Chinese Chemical Letters, 2025, 36(6): 109989-. doi: 10.1016/j.cclet.2024.109989

    9. [9]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    10. [10]

      Guihuang FangWei ChenHongwei YangHaisheng FangChuang YuMaoxiang Wu . Improved performance of LiMn0.8Fe0.2PO4 by addition of fluoroethylene carbonate electrolyte additive. Chinese Chemical Letters, 2024, 35(6): 108799-. doi: 10.1016/j.cclet.2023.108799

    11. [11]

      Xiuxiu JiaTao YinNianpeng LiHua ZhangAnxian ShiAbdukader AbdukayumSanshuang GaoGuangzhi Hu . Reticulated lanthanum (La) carbonate-carbon composite for efficient phosphorus removal from eutrophic wastewater. Chinese Chemical Letters, 2025, 36(6): 110398-. doi: 10.1016/j.cclet.2024.110398

    12. [12]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    13. [13]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    14. [14]

      Pengfei LiChulin QuFan WuHu GaoChengyan ZhaoYue ZhaoZhen Shen . Robust free-base and metalated corrole radicals with reduction-induced emission. Chinese Chemical Letters, 2025, 36(2): 110292-. doi: 10.1016/j.cclet.2024.110292

    15. [15]

      Yuanyu YANGJianhua XUEYujia BAILulu CUIDongdong YANGQi MA . Design, synthesis, and detection of Al3+ of two zinc complexes based on Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1207-1216. doi: 10.11862/CJIC.20250005

    16. [16]

      Zhenjie YangChenyang HuXuan PangXuesi Chen . Sequence design in terpolymerization of ε-caprolactone, CO2 and cyclohexane oxide: Random ester-carbonate distributions lead to large-span tunability. Chinese Chemical Letters, 2024, 35(5): 109340-. doi: 10.1016/j.cclet.2023.109340

    17. [17]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    18. [18]

      Kezhen QiShu-yuan LiuRuchun Li . Selective dissolution for stabilizing solid electrolyte interphase. Chinese Chemical Letters, 2024, 35(5): 109460-. doi: 10.1016/j.cclet.2023.109460

    19. [19]

      Biao Fang Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347

    20. [20]

      Kunyao PengXianbin WangXingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274

Metrics
  • PDF Downloads(0)
  • Abstract views(332)
  • HTML views(73)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return