The effect of NaF amount on solid base catalysts derived from F-Ca-Mg-Al layered double hydroxides and dimethyl carbonate synthesis
- Corresponding author: Feng LI, lifeng2729@sxicc.ac.cn
Citation:
Feng LI, Yun-hui LIAO, Ning ZHAO, Fu-kui XIAO. The effect of NaF amount on solid base catalysts derived from F-Ca-Mg-Al layered double hydroxides and dimethyl carbonate synthesis[J]. Journal of Fuel Chemistry and Technology,
;2022, 50(1): 80-89.
doi:
10.1016/S1872-5813(21)60165-2
TUNDO P, SELVA M. The chemistry of dimethyl carbonate[J]. ACC Chem Res,2002,35(9):706−716.
doi: 10.1021/ar010076f
CROCELLA V, TABANELLI T, VITILLO J. G, COSTENARO D, BISIO C, CAVANI F, BORDIGA S. A multi-technique approach to disclose the reaction mechanism of dimethyl carbonate synthesis over amino-modified SBA-15 catalysts[J]. Appl Catal B: Environ,2017,211:323−336.
doi: 10.1016/j.apcatb.2017.04.013
TUNDO P, MUSOLINO M, ARICO F. The reactions of dimethyl carbonate and its derivatives[J]. Green Chem,2018,20(1):28−85.
doi: 10.1039/C7GC01764B
WANG D F, ZHANG X L, MA J, YU H W, SHEN J Z, WEI W. La-modified mesoporous Mg-Al mixed oxides: effective and stable base catalysts for the synthesis of dimethyl carbonate from methyl carbamate and methanol[J]. Catal Sci Technol,2016,6(5):1530−1545.
doi: 10.1039/C5CY01712B
HUANG S Y, YAN B, WANG S P, MA X B. Recent advances in dialkyl carbonates synthesis and applications[J]. Chem Soc Rev,2015,44(10):3079−3116.
doi: 10.1039/C4CS00374H
SAADA R, KELLICI S, HEILI T, MORGAN D, SAHA B. Greener synthesis of dimethyl carbonate using a novel ceria-zirconia oxide/grapheme nanocomposite catalyst[J]. Appl Catal B: Environ,2015,168−169:353−362.
TAMBOLI A H, CHAUGULE A A, KIM H. Catalytic developments in the direct dimethyl carbonate synthesis from carbon dioxide and methanol[J]. Chem Eng J,2017,323:530−544.
doi: 10.1016/j.cej.2017.04.112
FIORANI G, PEROSA A, SELVA M. Dimethyl carbonate: A versatile reagent for a sustainable valorization of renewables[J]. Green Chem,2018,20(2):288−322.
doi: 10.1039/C7GC02118F
SRIVASTAVA R, SRINIVAS D, RATNASAMY P. Fe-Zn double-metal cyanide complexes as novel, solid transesterification catalysts[J]. J Catal,2006,241(1):34−44.
doi: 10.1016/j.jcat.2006.04.002
XU J, WU H T, MA C M, XUE B, LI Y X, CAO Y. Ionic liquid immobilized on mesocellular silica foam as an efficient heterogeneous catalyst for the synthesis of dimethyl carbonate via transesterification[J]. Appl Catal A: Gen,2013,464–465:357−363.
MURUGAN C, BAJAJ H C, JASRA R V. Transesterification of propylene carbonate by methanol using KF/Al2O3 as an efficient base catalyst[J]. Catal Lett,2010,137:224−231.
doi: 10.1007/s10562-010-0348-6
GAO Y, XU C. Synthesis of dimethyl carbonate over waste eggshell catalyst[J]. Catal Today,2012,190(1):107−111.
doi: 10.1016/j.cattod.2011.12.004
WANG H, WANG M H, ZHAO N, WEI W, SUN Y H. CaO-ZrO2 solid solution: A highly stable catalyst for the synthesis of dimethyl carbonate from propylene carbonate and methanol[J]. Catal Lett,2005,105:253−257.
doi: 10.1007/s10562-005-8699-0
WANG H, WANG M H, LIU S G, ZHAO N, WEI W, SUN Y H. Influence of preparation methods on the structure and performance of CaO-ZrO2 catalyst for the synthesis of dimethyl carbonate via transesterification[J]. J Mol Catal A,2006,258(1-2):308−312.
doi: 10.1016/j.molcata.2006.05.050
WEI T, WANG M H, WEI W, SUN Y H, ZHONG B. Synthesis of dimethyl carbonate by transesterification over CaO/carbon composites[J]. Green Chem,2003,5(3):343−346.
doi: 10.1039/b210716n
LIAO Y H, LI F, DAI X, ZHAO N, XIAO F K. Solid base catalysts derived from Ca-M-Al (M = Mg, La, Ce, Y) layered double hydroxides for dimethyl carbonate synthesis by transesterification of methanol with propylene carbonate[J]. Chin J Catal,2017,38(11):1860−1869.
doi: 10.1016/S1872-2067(17)62898-5
LIAO Y H, LI F, PU Y F, WANG F, DAI X, ZHAO N, XIAO F K. Solid base catalysts derived from Ca-Al-X (X = F-, Cl- and Br-) layered double hydroxides for methanolysis of propylene carbonate[J]. RSC Adv,2018,8(2):785−791.
doi: 10.1039/C7RA10832J
LIAO Y H, LI F, DAI X, ZHAO N, XIAO F K. Dimethyl carbonate synthesis over solid base catalysts derived from Ca-Al layered double hydroxides[J]. Chem Pap,2018,72:1963−1971.
doi: 10.1007/s11696-018-0408-8
XU S L, CHEN Z R, ZHANG B W, YU J H, ZHANG F. Z, EVANS D G. Facile preparation of pure CaAl-layered double hydroxides and their application as a hardening accelerator in concrete[J]. Chem Eng J,2009,155(3):881−885.
doi: 10.1016/j.cej.2009.08.003
KOCIK J, HAJEK M, TROPPOVA I. The factors influencing stability of Ca-Al mixed oxides as a possible catalyst for biodiesel production[J]. Fuel Process Technol,2015,134:297−302.
doi: 10.1016/j.fuproc.2015.02.013
HAN M S, LEE B G, AHN B S, PARK K Y, HONG S I. Kinetics of dimethyl carbonate synthesis from ethylene carbonate and methanol using alkali-metal compounds as catalysts[J]. React Kinet Catal Lett,2001,73:33−38.
doi: 10.1023/A:1013904317108
OESTREICHER V, JOBBAGY M. One pot synthesis of Mg2Al(OH)6Cl·1.5H2O layered double hydroxides: the epoxide route[J]. Langmuir,2013,29(39):12104−12109.
doi: 10.1021/la402260m
ANGELESCU E, PAVEL O D, BIRJEGA R, FLOREA M, ZAVOIANU R. The impact of the “memory effect” on the catalytic activity of Mg/Al; Mg, Zn/Al; Mg/Al, Ga hydrotalcite-like compounds used as catalysts for cycloxene epoxidation[J]. Appl Catal A: Gen,2008,341(1/2):50−57.
doi: 10.1016/j.apcata.2007.12.022
BEHRENS M, KASATKIN I, KUHL S, WEINBERG G. Phase-pure Cu, Zn, Al hydrotalcite-like materials as precursors for copper rich Cu/ZnO/Al2O3 catalysts[J]. Chem Mater,2010,22(2):386−397.
KUMAR P, SRIVASTAVA V C, MISHRA I M. Dimethyl carbonate synthesis from propylene carbonate with methanol using Cu-Zn-Al catalyst[J]. Energy Fuels,2015,29(4):2664−2675.
doi: 10.1021/ef502856z
WU G D, WANG X L, WEI W, SUN Y H. Fluorine-modified Mg-Al mixed oxides: A solid base with variable basic sites and tunable basicity[J]. Appl Catal A: Gen,2010,377(1/2):107−113.
doi: 10.1016/j.apcata.2010.01.023
WEI T, WANG M H, WEI W, SUN Y H, ZHONG B. Effect of base strength and basicity on catalytic behavior of solid bases for synthesis of dimethyl carbonate from propylene carbonate and methanol[J]. Fuel Process Technol,2003,83(1/3):175−182.
doi: 10.1016/S0378-3820(03)00065-1
Xinyu You , Xin Zhang , Shican Jiang , Yiru Ye , Lin Gu , Hexun Zhou , Pandong Ma , Jamal Ftouni , Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265
Ming Huang , Xiuju Cai , Yan Liu , Zhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323
Ruofan Qi , Jing Zhang , Wang Sun , Bai Yu , Zhenhua Wang , Kening Sun . Solid-acid-Lewis-base interaction accelerates lithium ion transport for uniform lithium deposition. Chinese Chemical Letters, 2025, 36(6): 110009-. doi: 10.1016/j.cclet.2024.110009
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Xinyi Hu , Riguang Zhang , Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157
Jinqiang Gao , Haifeng Yuan , Xinjuan Du , Feng Dong , Yu Zhou , Shengnan Na , Yanpeng Chen , Mingyu Hu , Mei Hong , Shihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232
Kaili Wang , Pengcheng Liu , Mingzhe Wang , Tianran Wei , Jitao Lu , Xingling Zhao , Zaiyong Jiang , Zhimin Yuan , Xijun Liu , Jia He . Modulating d-d orbitals coupling in PtPdCu medium-entropy alloy aerogels to boost pH-general methanol electrooxidation performance. Chinese Chemical Letters, 2025, 36(4): 110532-. doi: 10.1016/j.cclet.2024.110532
Fenglin Wang , Chengwei Kuang , Zhicheng Zheng , Dan Wu , Hao Wan , Gen Chen , Ning Zhang , Xiaohe Liu , Renzhi Ma . Noble metal clusters substitution in porous Ni substrate renders high mass-specific activities toward oxygen evolution reaction and methanol oxidation reaction. Chinese Chemical Letters, 2025, 36(6): 109989-. doi: 10.1016/j.cclet.2024.109989
Xinyu Liu , Jialin Yang , Zonglin He , Jiaoyan Ai , Lina Song , Baohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236
Guihuang Fang , Wei Chen , Hongwei Yang , Haisheng Fang , Chuang Yu , Maoxiang Wu . Improved performance of LiMn0.8Fe0.2PO4 by addition of fluoroethylene carbonate electrolyte additive. Chinese Chemical Letters, 2024, 35(6): 108799-. doi: 10.1016/j.cclet.2023.108799
Xiuxiu Jia , Tao Yin , Nianpeng Li , Hua Zhang , Anxian Shi , Abdukader Abdukayum , Sanshuang Gao , Guangzhi Hu . Reticulated lanthanum (La) carbonate-carbon composite for efficient phosphorus removal from eutrophic wastewater. Chinese Chemical Letters, 2025, 36(6): 110398-. doi: 10.1016/j.cclet.2024.110398
Tao Yu , Vadim A. Soloshonok , Zhekai Xiao , Hong Liu , Jiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901
Xiaofen GUAN , Yating LIU , Jia LI , Yiwen HU , Haiyuan DING , Yuanjing SHI , Zhiqiang WANG , Wenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122
Pengfei Li , Chulin Qu , Fan Wu , Hu Gao , Chengyan Zhao , Yue Zhao , Zhen Shen . Robust free-base and metalated corrole radicals with reduction-induced emission. Chinese Chemical Letters, 2025, 36(2): 110292-. doi: 10.1016/j.cclet.2024.110292
Yuanyu YANG , Jianhua XUE , Yujia BAI , Lulu CUI , Dongdong YANG , Qi MA . Design, synthesis, and detection of Al3+ of two zinc complexes based on Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1207-1216. doi: 10.11862/CJIC.20250005
Zhenjie Yang , Chenyang Hu , Xuan Pang , Xuesi Chen . Sequence design in terpolymerization of ε-caprolactone, CO2 and cyclohexane oxide: Random ester-carbonate distributions lead to large-span tunability. Chinese Chemical Letters, 2024, 35(5): 109340-. doi: 10.1016/j.cclet.2023.109340
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
Kezhen Qi , Shu-yuan Liu , Ruchun Li . Selective dissolution for stabilizing solid electrolyte interphase. Chinese Chemical Letters, 2024, 35(5): 109460-. doi: 10.1016/j.cclet.2023.109460
Biao Fang , Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347
Kunyao Peng , Xianbin Wang , Xingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274
reaction conditions: (a): catalyst weight = 2% of total reactants, 333 K, 2 h; (b): FCMA-0.8 catalyst, n(methanol)/n(PC) = 12333 K; (c), (d): n(methanol)/n(PC) = 12, catalyst weight = 2% of total reactants, 333 K, 2 h
reaction conditions: n(methanol) / n(PC) = 12, catalyst weight = 2% of total reactants, 333 K, 2 h