Effects of syngas from semi-coke in-situ gasification on yield and quality of tar from pyrolysis of Naomaohu coal
- Corresponding author: Mei-jun WANG, wangmeijun@tyut.edu.cn
Citation:
Jiao KONG, Huan WANG, Yan-xu YU, Ya-nan CHEN, Mei-jun WANG, Li-ping CHANG, Wei-ren BAO. Effects of syngas from semi-coke in-situ gasification on yield and quality of tar from pyrolysis of Naomaohu coal[J]. Journal of Fuel Chemistry and Technology,
;2022, 50(4): 385-395.
doi:
10.1016/S1872-5813(21)60164-0
WANG Jian-guo, ZHAO Xiao-hong. Demonstration of key technologies for clean and efficient utilization of low-rank coal[J]. Bull Chin Acad Sci,2012,27(3):382−388.
doi: 10.3969/j.issn.1000-3045.2012.03.018
HAN Yong-bin, LIU Gui-ju, ZHAO Hui-bin. Structural characteristics of low-rank coal and its pyrolysis technology development[J]. Bull Chin Acad Sci,2013,28(6):772−780.
ZHANG C, WU R C, HU E F, LIU S Y, XU G W. Coal pyrolysis for high-quality tar and gas in 100 kg fixed bed enhanced with internals[J]. Energy Fuels, 2014, 28: 7294–7302.
EDWARDS J H, SCHLUTER K, TYLER R J. Upgrading of flash pyrolysis tars to synthetic crude oil: 1. First stage hydrotreatment using a disposable catalyst[J]. Fuel, 1985, 64: 594–599.
SOLOMON P R, FLETCHER T H, PUGMIRE R J. Progress in coal pyrolysis[J]. Fuel,1993,72(5):587−597.
doi: 10.1016/0016-2361(93)90570-R
GREENE M I. Engineering development of a short residence time, coal hydropyrolysis process[J]. Fuel Process Technol,1978,1(3):169−185.
doi: 10.1016/0378-3820(78)90017-6
WANG P F, JIN L, LIU J, ZHU S, HU H. Analysis of coal tar derived from pyrolysis at different atmospheres[J]. Fuel,2013,104(2):14−21.
JIN L J, ZHOU X, HE X F, HU H Q. Integrated coal pyrolysis with methane aromatization over Mo/HZSM-5 for improving tar yield[J]. Fuel,2013,114:l87−190.
DONG C, JIN L J, LI Y, ZHOU Y. Integrated process of coal pyrolysis with steam reforming of methane for improving the tar yield[J]. Energy Fuels,2014,28:7377−7384.
doi: 10.1021/ef501796a
ZHONG M, ZHANG Z K, ZHOU Q, YUE J R. Continuous high-temperature fluidized bed pyrolysis of coal in complex atmospheres: Product distribution and pyrolysis gas[J]. J Anal Appl Pyrolysis,2012,97(6):123−129.
STEINBERG M, FALLON P T. Make ethylene and benzene by flash methanolysis of coal[J]. Hydrocarb Process,1982,61(11):92−96.
GUO Zhi-hang. Research on key issues of lignite pyrolysis-based staged conversion polygeneration technology[D]. Hangzhou: Zhejiang University, 2015.
LI Bao-qing. Hydropyrolysis of Chinese coals Ⅲ. Catalytic and non-catalytic hydropyrolysis and pyrolysis under H2-CH4 of Shenfu bituminous coal[J]. J Fuel Chem Technol,1995,23(2):192−197.
HU Hao-quan, DI Min-na, WANG Ming-yi, JIN Li-jun, WANG De-chao. Upgrading of coal pyrolysis tar by catalytic cracking coupled with steam reforming of ethane[J]. J China Coal Soc,2020,45(1):386−392.
LIAO Hong-qiang, ZHANG Bi-jiang, LI Bao-qing, LIU Ze-chang. Copyrolysis of coal with coke-oven gas IV. Influence of CH4 and CO on pyrolysis yields[J]. J Fuel Chem Technol,1998,26(1):13−17.
JIN L J, ZHAO H B, WANG M Y, WEI B Y, HU H Q. Effect of temperature and simulated coal gas composition on tar production during pyrolysis of a subbituminous coal[J]. Fuel,2019,241:1129−1137.
doi: 10.1016/j.fuel.2018.12.093
ZHANG X F, DONG L, ZHANG J W, TIAN Y J, XU G W. Coal pyrolysis in a fluidized bed reactor simulating the process conditions of coal topping in CFB boiler[J]. J Anal Appl Pyrolysis,2011,91(1):241−250.
doi: 10.1016/j.jaap.2011.02.013
ARIUNAA A, LI B Q, LI W, PUREVSUREN B, MUNKHJARGAL S, LIU F R, BAI Z Q, WANG G. Coal pyrolysis under synthesis gas, hydrogen and nitrogen[J]. J Fuel Chem Technol,2007,35(1):1−4.
doi: 10.1016/S1872-5813(07)60007-3
CHEN Z H, SHI Y, LAI D G, GAO S Q, SHI Z, TIAN Y, XU G W. Coal rapid pyrolysis in a transport bed under steam-containing syngas atmosphere relevant to the integrated fluidized bed gasification[J]. Fuel,2016,176:200−208.
doi: 10.1016/j.fuel.2016.02.082
LIAO H Q, LI B Q, ZHANG B J. Co-pyrolysis of coal with hydrogen-rich gases. 1. Coal pyrolysis under coke-oven gas and synthesis gas[J]. Fuel,1998,77(8):847−851.
doi: 10.1016/S0016-2361(97)00257-3
LIAO H Q, LI B Q, ZHANG B J. Pyrolysis of coal with hydrogen-rich gases. 2. Desulfurization and denitrogenation in coal pyrolysis under coke-oven gas and synthesis gas[J]. Fuel,1998,77(14):1643−1646.
doi: 10.1016/S0016-2361(98)00076-3
FIDALGO B, NIEKERK D V, MILLAN M. The effect of syngas on tar quality and quantity in pyrolysis of a typical South African inertinite-rich coal[J]. Fuel,2014,134(9):90−96.
MURAKAMI T, YASUDA H, NORISADA K. Comparison of tar components in syngas generated by gasification conditions of lignite in a fluidized bed gasifier[J]. Energy Fuels,2018,32(2):1110−1114.
doi: 10.1021/acs.energyfuels.7b02579
CHEN Z H, LAI D G, BAI L Q, TIAN Y, GAO S Q, XU G W. Methane-rich syngas production in an integrated fluidized bed by coupling pyrolysis and gasification of low-rank coal[J]. Fuel Process Technol,2015,140:88−95.
doi: 10.1016/j.fuproc.2015.08.028
(JIN Xin, WANG Qian, LI Xiao-rong, LI Ting, WANG Mei-jun, KONG Jiao, YAN Lun-jing, CHANG Li-ping, WANG Jian-cheng, BAO Wei-ren. Coke formation on activated carbon during catalytic upgrading of coal pyrolysis volatiles[J]. J Fuel Chem Technol,2021,49(5):609−616.
doi: 10.1016/S1872-5813(21)60047-6
SOLOMON P R, HAMBLEN D G, CARANGELO R M, SERIO M A, DESHPANDE G V. Models of tar formation during coal devolatilization[J]. Combust Flame,1988,71(2):137−146.
doi: 10.1016/0010-2180(88)90003-X
SHI L, LIU Q Y, LIU Z Y, WU W Z. Oils and phenols-and-water-free tars produced in pyrolysis of 23 Chinese coals in consecutive temperature ranges[J]. Energy Fuels,2013,27(10):5816−5822.
doi: 10.1021/ef401215h
WANG Huan. Effect of thermal field temperature and packing medium on reactions of volatiles from Naomaohu coal[D]. Taiyuan: Taiyuan University of Technology, 2019.
LIU P, ZHANG D X, WANG L L, ZHOU Y, PAN T Y, LU X L. The structure and pyrolysis product distribution of lignite from different sedimentary environment[J]. Appl Energy,2016,163:254−262.
doi: 10.1016/j.apenergy.2015.10.166
LIU P, LE J W, WANG L L, PAN T Y, LU X L, ZHANG D X. Relevance of carbon structure to formation of tar and liquid alkane during coal pyrolysis[J]. Appl Energy,2016,183:470−477.
doi: 10.1016/j.apenergy.2016.08.166
KOUICHI M. Mild conversion of coal for producing valuable chemicals[J]. Fuel Process Technol,2000,62(2):119−135.
WANG P F, JIN L J, LIU J H, ZHU S W, HU H Q. Analysis of coal tar derived from pyrolysis at different atmospheres[J]. Fuel,2013,104:14−21.
doi: 10.1016/j.fuel.2010.06.041
TAKAHASHI H, IWATSUKI M, ESSAKI K, TSUTSUMI A, CHIBA T. Rapid conversion of tar and char from pyrolysis of a brown coal by reactions with steam in a drop-tube reactor[J]. Fuel, 2000, 79: 439-447.
SONG Y, WANG Y, HU X, XIANG J, HU S, MOURANT D, LI T, WUL, LI C Z. Effects of volatile-char interactions on in-situ destruction of nascent tar during the pyrolysis and gasification of biomass. Part II. Roles of steam[J]. Fuel,2015,143:555−562.
doi: 10.1016/j.fuel.2014.11.096
LIU Z Y, GUO X J, SHI L, HE W J, WU J F, LIU Q Y, LIU J H. Reaction of volatiles - A crucial step in pyrolysis of coals[J]. Fuel,2015,154:361−369.
doi: 10.1016/j.fuel.2015.04.006
SILBERNAGELl B G, GEBHARD L A, DYRKACZ G R, BLOOMQUIST C A A. Electron spin resonance of isolated coal macerals[J]. Fuel,1986,65(4):558−565.
doi: 10.1016/0016-2361(86)90049-9
Yahui HAN , Jinjin ZHAO , Ning REN , Jianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016
Zhifang SU , Zongjie GUAN , Yu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
Aidang Lu , Yunting Liu , Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
Yifeng TAN , Ping CAO , Kai MA , Jingtong LI , Yuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
Xiaofang Li , Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
Yihao Zhao , Jitian Rao , Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050
Xiaowu Zhang , Pai Liu , Qishen Huang , Shufeng Pang , Zhiming Gao , Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020