Citation: Jiao KONG, Huan WANG, Yan-xu YU, Ya-nan CHEN, Mei-jun WANG, Li-ping CHANG, Wei-ren BAO. Effects of syngas from semi-coke in-situ gasification on yield and quality of tar from pyrolysis of Naomaohu coal[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(4): 385-395. doi: 10.1016/S1872-5813(21)60164-0 shu

Effects of syngas from semi-coke in-situ gasification on yield and quality of tar from pyrolysis of Naomaohu coal

  • Corresponding author: Mei-jun WANG, wangmeijun@tyut.edu.cn
  • Received Date: 26 July 2021
    Revised Date: 14 September 2021
    Available Online: 9 June 2022

Figures(10)

  • Pyrolysis atmosphere has significant effect on yield and composition of coal tar. A pyrolysis and gasification integrated reactor in laboratory was used to investigate effects of gasification syngas on yield and composition of coal tar. The results show that tar yield of Naomaohu coal reaches the maximum at 600 ℃, and gasification syngas (G-gas) is more beneficial to improve the tar yield at low temperature (550–600 ℃). Especially, 550 ℃ tar yield increases by 4.4% compared with that under N2. With the introduction of G-gas, the yield of tar obtained at high temperature (650–800 ℃) decreases, but the quality of tar obtained at 650–700 ℃ is improved obviously due to the increase of light components. The cracking reaction of aliphatic hydrocarbons and oxygen-containing compounds in volatiles from pyrolysis at 550 and 600 ℃ is intensified by G-gas, thus substituted benzene and naphthalene compounds in coal tar increase. For the volatiles obtained above 650 ℃, the secondary cracking reaction of phenolic compounds is enhanced with the introduction of G-gas, which results in a decrease of phenolic compounds in tar. G-gas is also favorable for the secondary cracking reaction of polycyclic aromatic hydrocarbons in volatiles from pyrolysis at 800 ℃, but more favorable for generation of which in the tar obtained below 700 ℃.
  • 加载中
    1. [1]

      WANG Jian-guo, ZHAO Xiao-hong. Demonstration of key technologies for clean and efficient utilization of low-rank coal[J]. Bull Chin Acad Sci,2012,27(3):382−388.  doi: 10.3969/j.issn.1000-3045.2012.03.018

    2. [2]

      HAN Yong-bin, LIU Gui-ju, ZHAO Hui-bin. Structural characteristics of low-rank coal and its pyrolysis technology development[J]. Bull Chin Acad Sci,2013,28(6):772−780.

    3. [3]

      ZHANG C, WU R C, HU E F, LIU S Y, XU G W. Coal pyrolysis for high-quality tar and gas in 100 kg fixed bed enhanced with internals[J]. Energy Fuels, 2014, 28: 7294–7302.

    4. [4]

      EDWARDS J H, SCHLUTER K, TYLER R J. Upgrading of flash pyrolysis tars to synthetic crude oil: 1. First stage hydrotreatment using a disposable catalyst[J]. Fuel, 1985, 64: 594–599.

    5. [5]

      SOLOMON P R, FLETCHER T H, PUGMIRE R J. Progress in coal pyrolysis[J]. Fuel,1993,72(5):587−597.  doi: 10.1016/0016-2361(93)90570-R

    6. [6]

      GREENE M I. Engineering development of a short residence time, coal hydropyrolysis process[J]. Fuel Process Technol,1978,1(3):169−185.  doi: 10.1016/0378-3820(78)90017-6

    7. [7]

      WANG P F, JIN L, LIU J, ZHU S, HU H. Analysis of coal tar derived from pyrolysis at different atmospheres[J]. Fuel,2013,104(2):14−21.

    8. [8]

      JIN L J, ZHOU X, HE X F, HU H Q. Integrated coal pyrolysis with methane aromatization over Mo/HZSM-5 for improving tar yield[J]. Fuel,2013,114:l87−190.

    9. [9]

      DONG C, JIN L J, LI Y, ZHOU Y. Integrated process of coal pyrolysis with steam reforming of methane for improving the tar yield[J]. Energy Fuels,2014,28:7377−7384.  doi: 10.1021/ef501796a

    10. [10]

      ZHONG M, ZHANG Z K, ZHOU Q, YUE J R. Continuous high-temperature fluidized bed pyrolysis of coal in complex atmospheres: Product distribution and pyrolysis gas[J]. J Anal Appl Pyrolysis,2012,97(6):123−129.

    11. [11]

      STEINBERG M, FALLON P T. Make ethylene and benzene by flash methanolysis of coal[J]. Hydrocarb Process,1982,61(11):92−96.

    12. [12]

      GUO Zhi-hang. Research on key issues of lignite pyrolysis-based staged conversion polygeneration technology[D]. Hangzhou: Zhejiang University, 2015.

    13. [13]

      LI Bao-qing. Hydropyrolysis of Chinese coals Ⅲ. Catalytic and non-catalytic hydropyrolysis and pyrolysis under H2-CH4 of Shenfu bituminous coal[J]. J Fuel Chem Technol,1995,23(2):192−197.

    14. [14]

      HU Hao-quan, DI Min-na, WANG Ming-yi, JIN Li-jun, WANG De-chao. Upgrading of coal pyrolysis tar by catalytic cracking coupled with steam reforming of ethane[J]. J China Coal Soc,2020,45(1):386−392.

    15. [15]

      LIAO Hong-qiang, ZHANG Bi-jiang, LI Bao-qing, LIU Ze-chang. Copyrolysis of coal with coke-oven gas IV. Influence of CH4 and CO on pyrolysis yields[J]. J Fuel Chem Technol,1998,26(1):13−17.

    16. [16]

      JIN L J, ZHAO H B, WANG M Y, WEI B Y, HU H Q. Effect of temperature and simulated coal gas composition on tar production during pyrolysis of a subbituminous coal[J]. Fuel,2019,241:1129−1137.  doi: 10.1016/j.fuel.2018.12.093

    17. [17]

      ZHANG X F, DONG L, ZHANG J W, TIAN Y J, XU G W. Coal pyrolysis in a fluidized bed reactor simulating the process conditions of coal topping in CFB boiler[J]. J Anal Appl Pyrolysis,2011,91(1):241−250.  doi: 10.1016/j.jaap.2011.02.013

    18. [18]

      ARIUNAA A, LI B Q, LI W, PUREVSUREN B, MUNKHJARGAL S, LIU F R, BAI Z Q, WANG G. Coal pyrolysis under synthesis gas, hydrogen and nitrogen[J]. J Fuel Chem Technol,2007,35(1):1−4.  doi: 10.1016/S1872-5813(07)60007-3

    19. [19]

      CHEN Z H, SHI Y, LAI D G, GAO S Q, SHI Z, TIAN Y, XU G W. Coal rapid pyrolysis in a transport bed under steam-containing syngas atmosphere relevant to the integrated fluidized bed gasification[J]. Fuel,2016,176:200−208.  doi: 10.1016/j.fuel.2016.02.082

    20. [20]

      LIAO H Q, LI B Q, ZHANG B J. Co-pyrolysis of coal with hydrogen-rich gases. 1. Coal pyrolysis under coke-oven gas and synthesis gas[J]. Fuel,1998,77(8):847−851.  doi: 10.1016/S0016-2361(97)00257-3

    21. [21]

      LIAO H Q, LI B Q, ZHANG B J. Pyrolysis of coal with hydrogen-rich gases. 2. Desulfurization and denitrogenation in coal pyrolysis under coke-oven gas and synthesis gas[J]. Fuel,1998,77(14):1643−1646.  doi: 10.1016/S0016-2361(98)00076-3

    22. [22]

      FIDALGO B, NIEKERK D V, MILLAN M. The effect of syngas on tar quality and quantity in pyrolysis of a typical South African inertinite-rich coal[J]. Fuel,2014,134(9):90−96.

    23. [23]

      MURAKAMI T, YASUDA H, NORISADA K. Comparison of tar components in syngas generated by gasification conditions of lignite in a fluidized bed gasifier[J]. Energy Fuels,2018,32(2):1110−1114.  doi: 10.1021/acs.energyfuels.7b02579

    24. [24]

      CHEN Z H, LAI D G, BAI L Q, TIAN Y, GAO S Q, XU G W. Methane-rich syngas production in an integrated fluidized bed by coupling pyrolysis and gasification of low-rank coal[J]. Fuel Process Technol,2015,140:88−95.  doi: 10.1016/j.fuproc.2015.08.028

    25. [25]

      (JIN Xin, WANG Qian, LI Xiao-rong, LI Ting, WANG Mei-jun, KONG Jiao, YAN Lun-jing, CHANG Li-ping, WANG Jian-cheng, BAO Wei-ren. Coke formation on activated carbon during catalytic upgrading of coal pyrolysis volatiles[J]. J Fuel Chem Technol,2021,49(5):609−616.  doi: 10.1016/S1872-5813(21)60047-6

    26. [26]

      SOLOMON P R, HAMBLEN D G, CARANGELO R M, SERIO M A, DESHPANDE G V. Models of tar formation during coal devolatilization[J]. Combust Flame,1988,71(2):137−146.  doi: 10.1016/0010-2180(88)90003-X

    27. [27]

      SHI L, LIU Q Y, LIU Z Y, WU W Z. Oils and phenols-and-water-free tars produced in pyrolysis of 23 Chinese coals in consecutive temperature ranges[J]. Energy Fuels,2013,27(10):5816−5822.  doi: 10.1021/ef401215h

    28. [28]

      WANG Huan. Effect of thermal field temperature and packing medium on reactions of volatiles from Naomaohu coal[D]. Taiyuan: Taiyuan University of Technology, 2019.

    29. [29]

      LIU P, ZHANG D X, WANG L L, ZHOU Y, PAN T Y, LU X L. The structure and pyrolysis product distribution of lignite from different sedimentary environment[J]. Appl Energy,2016,163:254−262.  doi: 10.1016/j.apenergy.2015.10.166

    30. [30]

      LIU P, LE J W, WANG L L, PAN T Y, LU X L, ZHANG D X. Relevance of carbon structure to formation of tar and liquid alkane during coal pyrolysis[J]. Appl Energy,2016,183:470−477.  doi: 10.1016/j.apenergy.2016.08.166

    31. [31]

      KOUICHI M. Mild conversion of coal for producing valuable chemicals[J]. Fuel Process Technol,2000,62(2):119−135.

    32. [32]

      WANG P F, JIN L J, LIU J H, ZHU S W, HU H Q. Analysis of coal tar derived from pyrolysis at different atmospheres[J]. Fuel,2013,104:14−21.  doi: 10.1016/j.fuel.2010.06.041

    33. [33]

      TAKAHASHI H, IWATSUKI M, ESSAKI K, TSUTSUMI A, CHIBA T. Rapid conversion of tar and char from pyrolysis of a brown coal by reactions with steam in a drop-tube reactor[J]. Fuel, 2000, 79: 439-447.

    34. [34]

      SONG Y, WANG Y, HU X, XIANG J, HU S, MOURANT D, LI T, WUL, LI C Z. Effects of volatile-char interactions on in-situ destruction of nascent tar during the pyrolysis and gasification of biomass. Part II. Roles of steam[J]. Fuel,2015,143:555−562.  doi: 10.1016/j.fuel.2014.11.096

    35. [35]

      LIU Z Y, GUO X J, SHI L, HE W J, WU J F, LIU Q Y, LIU J H. Reaction of volatiles - A crucial step in pyrolysis of coals[J]. Fuel,2015,154:361−369.  doi: 10.1016/j.fuel.2015.04.006

    36. [36]

      SILBERNAGELl B G, GEBHARD L A, DYRKACZ G R, BLOOMQUIST C A A. Electron spin resonance of isolated coal macerals[J]. Fuel,1986,65(4):558−565.  doi: 10.1016/0016-2361(86)90049-9

  • 加载中
    1. [1]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    2. [2]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    3. [3]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    4. [4]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    5. [5]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    6. [6]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    7. [7]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    8. [8]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    11. [11]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    12. [12]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    13. [13]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    14. [14]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

    15. [15]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    16. [16]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    17. [17]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    18. [18]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    19. [19]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    20. [20]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

Metrics
  • PDF Downloads(0)
  • Abstract views(394)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return