Citation: Jing-yuan FAN, Zhen-gang LÜ, Cheng-hua ZHANG, Jian XU, Hong-wei XIANG. Study on size effect of γ-Fe2O3 nanoparticles and gas atmosphere on carburization process[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(2): 218-226. doi: 10.1016/S1872-5813(21)60157-3 shu

Study on size effect of γ-Fe2O3 nanoparticles and gas atmosphere on carburization process

Figures(16)

  • Different sizes of γ-Fe2O3 nanoparticles (4−19 nm) were prepared by thermal decomposition of iron oleate and carburized in three different gas atmosphere of 5%CO/He, 5%CO/10%H2/He and 5%CO/20%H2/He at 350 ℃. The carburization process and phase transformation of γ-Fe2O3 nanoparticles were investigated by in situ XRD, Raman spectroscopy, CO-TPR and TEM. The results showed that χ-Fe5C2 and θ-Fe3C phases with a stable ratio were formed after carburization. The time to complete carburization was shortened for increasing sizes of γ-Fe2O3 particles under the same carburization atmosphere. While the smaller γ-Fe2O3 particles showed more residual carbon on the surface, which could inhibit the carburization process. The relative content of θ-Fe3C increased with the increase of the size of γ-Fe2O3 nanoparticles. For γ-Fe2O3 nanoparticles with the same sizes, the time to complete carburization in different atmospheres was firstly shortened and then slightly lengthened with the increase of H2 partial pressure, while the relative content of θ-Fe3C increased with the increase of H2 partial pressure. By adjusting the particle size of γ-Fe2O3 and the carburization atmosphere, the mixed phases of χ-Fe5C2 and θ-Fe3C can be optimized.
  • 加载中
    1. [1]

      VAN STEEN E, CLAEYS M. Fischer-Tropsch catalysts for the biomass to liquid process[J]. Chem Eng Technol,2008,31(5):655−666.  doi: 10.1002/ceat.200800067

    2. [2]

      YANG Y, XU J, LIU Z Y, GUO Q, YE M, WANG G, GAO J, WANG J, ZHU Z, GE W, LIU Z, WANG F, LI Y. Progress in coal chemical technologies of China[J]. Rev Chem Eng,2020,36(1):21−66.

    3. [3]

      WEN Xiao-dong, YANG Yong, XIANG Hong-wei, JIAO Hai-jun, LI Yong-wang. The design principle of iron-based catalysts for fischer-tropsch synthesis: from theory to practice[J]. Sci Sin Chim,2017,47(11):1298−1311.  doi: 10.1360/N032017-00111

    4. [4]

      DICTOR R A, BELL A T. Fischer-Tropsch synthesis over reduced and unreduced iron-oxide catalysts[J]. J Catal,1986,97(1):121−136.  doi: 10.1016/0021-9517(86)90043-6

    5. [5]

      TORRES GALVIS H M, BITTER J H, KHARE C B, RUITENBEEK M, DUGULAN A L, DE JONG K P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science,2012,335(6070):835−838.  doi: 10.1126/science.1215614

    6. [6]

      DING Ming-yue, YANG Yong, XIANG Hong-wei, LI Yong-wang. Relationship between iron phase and activity of iron-based Fischer-Tropsch synthesis catalyst[J]. Chin J Catal,2010,31(9):1145−1150.

    7. [7]

      BIAN G Z, OONUKI A, KOIZUMI N, NOMOTO H, YAMADA M. Studies with a precipitated iron Fischer-Tropsch catalyst reduced by H2 or CO[J]. J Mol Catal A: Chem,2002,186(1/2):203−213.  doi: 10.1016/S1381-1169(02)00186-3

    8. [8]

      YANG C, ZHAO H, HOU Y, MA D. Fe5C2 nanoparticles: A facile bromide-induced synthesis and as an active phase for Fischer-Tropsch synthesis[J]. J Am Chem Soc,2012,134(38):15814−15821.  doi: 10.1021/ja305048p

    9. [9]

      MA C, ZHANG W, CHANG Q, WANG X, WANG H, CHEN H, WEI Y, ZHANG C, XIANG H, YANG Y, LI Y. θ-Fe3C dominated Fe@C core-shell catalysts for Fischer-Tropsch synthesis: roles of θ-Fe3C and carbon shell[J]. J Catal,2021,393:238−246.  doi: 10.1016/j.jcat.2020.11.033

    10. [10]

      LO J M H, ZIEGLER T. Density functional theory and kinetic studies of methanation on iron surface[J]. J Phys Chem C,2007,111(29):11012−11025.  doi: 10.1021/jp0722206

    11. [11]

      PARK J, AN K J, HWANG Y S, PARK J G, NOH H J, KIM J Y, PARK J H, HWANG N M, HYEON T W. Ultra-large-scale syntheses of monodisperse nanocrystals[J]. Nat Mater,2004,3(12):891−895.  doi: 10.1038/nmat1251

    12. [12]

      YU W W, FALKNER J C, YAVUZ C T, COLVIN V L. Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts[J]. Chem Commun,2004,20:2306−2307.

    13. [13]

      KIM B H, LEE N, KIM H, AN K, PARK Y I, CHOI Y, SHIN K, LEE Y, KWON S G, NA H B, PARK J G, AHN T Y, KIM Y W, MOON W K, CHOI S H, HYEON T. Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents[J]. J Am Chem Soc,2011,133(32):12624−12631.  doi: 10.1021/ja203340u

    14. [14]

      GUO Tian-yu, LIU Su-yao, QING Ming, FENG Jing-li, LV Zhen-gang, WANG Hong, YANG Yong. In situ XRD study of the effect of H2O on Fe5C2 phase and Fischer-Tropsch performance[J]. J Fuel Chem Technol,2020,48(1):75−82.  doi: 10.3969/j.issn.0253-2409.2020.01.009

    15. [15]

      LI C, STAIR P C. An advance in Raman studies of catalysts: Ultraviolet resonance Raman spectroscopy[J]. Stud Surf Sci Catal,1996,101:881−890.

    16. [16]

      BUTOVSKY E, PERELSHTEIN I, GEDANKEN A. Air stable core-shell multilayer metallic nanoparticles synthesized by RAPET: Fabrication, characterization and suggested applications[J]. J Mater Chem,2012,22(30):15025−15030.  doi: 10.1039/c2jm32528d

    17. [17]

      SUN Feng. Research of Rietveld method in refinement of crystal structure and quantitative phase analysis[D]. Qingdao: Ocean University of China, 2009.

    18. [18]

      ZHAO S, LIU X, HUO C, LI Y, WANG J, JIAO H. Surface morphology of Hagg iron carbide (χ-Fe5C2) from ab initio atomistic thermodynamics[J]. J Catal,2012,294:47−53.  doi: 10.1016/j.jcat.2012.07.003

    19. [19]

      DE S E, CINQUINI F, BEALE A M, SAFONOVA O V, BEEK W V, SAUTET P, WECKHUYSEN B M. Stability and reactivity of ε-χ-θ iron carbide catalyst phases in Fischer-Tropsch synthesis: controlling μc[J]. J Am Chem Soc,2010,132(42):14928−14941.  doi: 10.1021/ja105853q

    20. [20]

      LIU Xing-wu. Preparation, phase transition and properties of iron carbides during Fischer-Tropsch synthesis[D]. Beijing: University of Chinese Academy of Sciences, 2016.

    21. [21]

      COHN E M, HPFER L J E. Some thermal reactions of the higher iron carbides[J]. J Chem Phys,1953,21(2):354−359.  doi: 10.1063/1.1698884

  • 加载中
    1. [1]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    2. [2]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    3. [3]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    4. [4]

      Jun DongSenyuan TanSunbin YangYalong JiangRuxing WangJian AoZilun ChenChaohai ZhangQinyou AnXiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010

    5. [5]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    6. [6]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    7. [7]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    8. [8]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    9. [9]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    10. [10]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    11. [11]

      Yuwei LiuYihui ZhuWeijian DuanYizhuo YangHaorui TuoChunhua Feng . Electrocatalytic nitrate reduction on Fe, Fe3O4, and Fe@Fe3O4 cathodes: Elucidating structure-sensitive mechanisms of direct electron versus hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(6): 110347-. doi: 10.1016/j.cclet.2024.110347

    12. [12]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    13. [13]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    14. [14]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    15. [15]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    16. [16]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    17. [17]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    18. [18]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    19. [19]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    20. [20]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

Metrics
  • PDF Downloads(0)
  • Abstract views(447)
  • HTML views(86)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return