Production of acetol and lactic acid from cellulose hydrogenolysis over Sn-Fe@C catalysts
- Corresponding author: Hai-yong WANG, wanghy@ms.giec.ac.cn Qi-ying LIU, liuqy@ms.giec.ac.cn
Citation:
Si-chan LI, Yu-long DENG, Hai-yong WANG, Chen-guang WANG, Long-long MA, Qi-ying LIU. Production of acetol and lactic acid from cellulose hydrogenolysis over Sn-Fe@C catalysts[J]. Journal of Fuel Chemistry and Technology,
;2022, 50(3): 314-325.
doi:
10.1016/S1872-5813(21)60153-6
LI Chang-zhi, WANG Ai-qin, ZHANG Tao. Progress of conversion of cellulose resource in ionic liquids[J]. CIESC J,2013,64(1):182−197.
doi: 10.3969/j.issn.0438-1157.2013.01.021
YAN Li-feng, ZHU Qing-shi. New chemical industry based on biomass[J]. CIESC J,2004,(12):1938−1943.
doi: 10.3321/j.issn:0438-1157.2004.12.002
GUO Xiao, YAN Ya-ni, ZHANG Ya-hong, TANG Yi. Heterogeneously catalytic transformation of biomass-derived sugars[J]. Prog Chem,2013,25(11):1915−1927.
LAZARIDIS P A, KARAKOULIA S A, TEODORESCU C, APOSTOL N, MACOVEI D, PANTELI A, DELIMITIS A, COMAN S M, PARVULESCU V I, TRIANTAFYLLIDIS K S. High hexitols selectivity in cellulose hydrolytic hydrogenation over platinum (Pt) vs. ruthenium (Ru) catalysts supported on micro/mesoporous carbon[J]. Appl Catal B: Environ,2017,214:1−14.
doi: 10.1016/j.apcatb.2017.05.031
GAO L F, BAO Y, GAN S Y, SUN Z H, SONG Z Q, HAN D X, LI F H, NIU L. Hierarchical nickel-cobalt-based transition metal oxide catalysts for the electrochemical conversion of biomass into valuable chemicals[J]. ChemSusChem,2018,11(15):2547−2553.
doi: 10.1002/cssc.201800695
KESKIVALI J, RAUTIAINEN S, HEIKKILA M, MYLLYMAKI TTT, KARJALAINEN J P, LAGERBLOM K, KEMELL M, VEHKAMAKI M, MEINANDER K, REPO T. Isosorbide synthesis from cellulose with an efficient and recyclable ruthenium catalyst[J]. Green Chem,2017,19(19):4563−4570.
doi: 10.1039/C7GC01821E
SATO S, SAKAI D, SATO F, YAMADA Y. Vapor-phase dehydration of glycerol into hydroxyacetone over silver catalyst[J]. Chem Lett,2012,41(9):965−966.
doi: 10.1246/cl.2012.965
HOYOS P, SINISTERRA J V, MOLINARI F, ALCANTARA A R, DE MARIA P D. Biocatalytic strategies for the asymmetric synthesis of alpha-hydroxy ketones[J]. Accounts Chem Res,2010,43(2):288−299.
doi: 10.1021/ar900196n
MOHAMAD. A review of acetol: Application and production[J]. Am J Appl Sci,2011,8:1135−1139.
doi: 10.3844/ajassp.2011.1135.1139
DENG T Y, LIU H C. Direct conversion of cellulose into acetol on bimetallic Ni-SnOx/Al2O3 catalysts[J]. J Mol Catal A: Chem,2014,388:66−73.
WANG H Y, ZHU C H, LIU Q Y, TAN J, WANG C G, LIANG Z, MA L L. Selective conversion of cellulose to hydroxyacetone and 1-hydroxy-2-butanone with Sn-Ni bimetallic catalysts[J]. ChemSusChem,2019,12(10):2154−2160.
doi: 10.1002/cssc.201900172
LIU X H, LIU X D, XU G Y, ZHANG Y, WANG C G, LU Q, MA L L. Highly efficient catalytic conversion of cellulose into acetol over Ni-Sn supported on nanosilica and the mechanism study[J]. Green Chem,2019,21(20):5647−5656.
doi: 10.1039/C9GC02449B
WANG Yong, ZOU Xian-wu, QIN Te-fu. Research progress on technologies of biomass conversion and upgrading of bio-oil[J]. Chem Bioeng,2010,27(9):1−5.
doi: 10.3969/j.issn.1672-5425.2010.09.001
DATTA R, HENRY M. Lactic acid: Recent advances in products, processes and technologies - a review[J]. J Chem Technol Biotechnol,2006,81(7):1119−1129.
doi: 10.1002/jctb.1486
RIZESCU C, PODOLEAN I, COJOCARU B, PARVULESCU V I, COMAN S M, ALBERO J, GARCIA H. RuCl3 supported on n-doped graphene as a reusable catalyst for the one-step glucose oxidation to succinic Acid[J]. ChemCatChem,2017,9(17):3314−3321.
doi: 10.1002/cctc.201700383
ZENG Wei, CHEN Feng-qiu, ZHAN Xiao-li. Advances in production technology of lactic acid[J]. Chem Ind Eng Prog,2006,18(7):744−749.
doi: 10.3321/j.issn:1000-6613.2006.07.005
DENG W P, WANG P, WANG B J, WANG Y L, YAN L F, LI Y Y, ZHANG Q H, CAO Z X, WANG Y. Transformation of cellulose and related carbohydrates into lactic acid with bifunctional Al(III)-Sn(II) catalysts[J]. Green Chem,2018,20(3):735−744.
doi: 10.1039/C7GC02975F
LI L Y, SHEN F, SMITH R L, QI X H. Quantitative chemocatalytic production of lactic acid from glucose under anaerobic conditions at room temperature[J]. Green Chem,2017,19(1):76−81.
doi: 10.1039/C6GC02443B
LEI X, WANG F F, LIU C L, YANG R Z, DONG W S. One-pot catalytic conversion of carbohydrate biomass to lactic acid using an ErCl3 catalyst[J]. Appl Catal A: Gen,2014,482:78−83.
doi: 10.1016/j.apcata.2014.05.029
ZHANG S P, JIN F M, HU J J, HUO Z B. Improvement of lactic acid production from cellulose with the addition of Zn/Ni/C under alkaline hydrothermal conditions[J]. Bioresour Technol,2011,102(2):1998−2003.
doi: 10.1016/j.biortech.2010.09.049
WANG Y L, DENG W P, WANG B J, ZHANG Q H, WAN X Y, TANG Z C, WANG Y, ZHU C, CAO Z X, WANG G C, WAN H L. Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water[J]. Nat Commun,2013,4:2141.
SING K S W, EVERETT D H, HAUL R A W, MOSCOU L, PIEROTTI R A, ROUQUEROL J, SIEMIENIEWSKA T. Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (recommendations 1984)[J]. Pure Appl Chem,1985,57(4):603−619.
doi: 10.1351/pac198557040603
LAU C L, WERTHEIM G K. Oxidation of tin - esca study[J]. J Vac Sci Technol,1978,15(2):622−624.
doi: 10.1116/1.569642
ZENG J, PENG C Q, WANG R C, CAO C Y, WANG X F, LIU J. Magnetic Sn/SnO/FeSn2 nanocomposite as a high-performance anode material for lithium-ion batteries[J]. Powder Technol,2020,364:719−724.
doi: 10.1016/j.powtec.2020.01.057
HU C Q, GAO Z H, YANG X R. Fabrication and magnetic properties of Fe3O4 octahedra[J]. Chem Phys Lett,2006,429(4/6):513−517.
doi: 10.1016/j.cplett.2006.08.041
YAMASHITA T, HAYES P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. Appl Surf Sci,2008,254(8):2441−2449.
doi: 10.1016/j.apsusc.2007.09.063
EMEIS C A. Determination of integrated molar extinction coefficients for infrared-absorption bands of pyridine adsorbed on solid acid catalysts[J]. J Catal,1993,141(2):347−54.
doi: 10.1006/jcat.1993.1145
WANG H Y, XIN H S, CAI C L, ZHU C H, XIU Z X, LIU Q Y, WENG Y J, WANG C G, ZHANG X H, LIU S J, PENG Z F, MA L L. Selective C-3-C-4 keto-alcohol production from cellulose hydrogenolysis over Ni-WOx/C catalysts[J]. ACS Catal,2020,10(18):10646−10660.
doi: 10.1021/acscatal.0c02375
XIU Z X, WANG H Y, CAI C L, LI C Z, YAN L, WANG C G, LI W Z, XIN H S, ZHU C H, ZHANG Q, LIU Q Y, MA L L. Ultrafast glycerol conversion to lactic acid over magnetically recoverable Ni-NiOx@C catalysts[J]. Ind Eng Chem Res,2020,59(21):9912−9925.
doi: 10.1021/acs.iecr.0c01145
KISHIDA H, JIN F M, ZHOU Z Y, MORIYA T, ENOMOTO H. Conversion of glycerin into lactic acid by alkaline hydrothermal reaction[J]. Chem Lett,2005,34(11):1560−1561.
doi: 10.1246/cl.2005.1560
Kuaibing Wang , Feifei Mao , Weihua Zhang , Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
Zhifang SU , Zongjie GUAN , Yu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
Yifeng TAN , Ping CAO , Kai MA , Jingtong LI , Yuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
Zhaoxin LI , Ruibo WEI , Min ZHANG , Zefeng WANG , Jing ZHENG , Jianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
Yue Zhao , Yanfei Li , Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001
Ran Yu , Chen Hu , Ruili Guo , Ruonan Liu , Lixing Xia , Cenyu Yang , Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032
Linjie ZHU , Xufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
Sn, PDF#04-0673; SnOx, PDF#13-0111 and PDF#41-1445; Fe3O4, PDF#75-1609; FeSn2, PDF#25-0415
(a): 50 ℃; (b): 200 ℃; (c): 250 ℃
reaction condition: 0.2 g cellulose; 0.1 g catalyst; 20 mL deionized water; reaction temperature 240 ℃; reaction time 1 h and 4 MPa H2 a: 0.1 g cellulose; 0.05 g catalyst; 20 mL deionized water; reaction temperature 240 ℃; reaction time 1 h and 5 MPa H2 La, lactic acid; 1-HB, 1-hydroxy-2-butanone; EG, ethylene glycol; Eth, ethanol; 3-HB, 3-hydroxy-2-butanone; Gly, glycerol; C6, fructose and glucose, the main product is fructose
Reaction condition: 0.2 g cellulose; 0.08 g catalyst; 20 mL deionized water; reaction temperature 240 ℃; reaction time 1 h and 4 MPa H2;La, lactic acid; 1-HB, 1-hydroxy-2-butanone; EG, ethylene glycol; Eth, ethanol; 3-HB, 3-hydroxy-2-butanone; Gly, glycerol; C6, fructose and glucose, the main product is fructose
Reaction condition: (a) 0.2 g cellulose, 0.01–0.06 g catalyst; (b) 0.4–2.0 g cellulose, 0.08 g catalyst; 20 mL deionized water; reaction temperature 240 ℃; reaction time 1 h and 4 MPa H2;La, lactic acid; 1-HB, 1-hydroxy-2-butanone; EG, ethylene glycol; Eth, ethanol; 3-HB, 3-hydroxy-2-butanone; Gly, glycerol; C6, fructose and glucose, the main product is fructose