Citation: Hui-yu HE, Sheng WANG, Lü-lü JI. Fabrication of self-supported Cu3N electrode for electrocatalytic nitrogen reduction reaction[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(4): 484-493. doi: 10.1016/S1872-5813(21)60152-4 shu

Fabrication of self-supported Cu3N electrode for electrocatalytic nitrogen reduction reaction

  • Corresponding author: Lü-lü JI, llji@zstu.edu.cn
  • Received Date: 2 July 2021
    Revised Date: 11 August 2021

Figures(7)

  • Electrocatalytic reduction of nitrogen (N2) to ammonia (NH3) by renewable energy-derived electricity provides a new route for sustainable development. But this process requires high-efficiency, high-selectivity and high-stability, inexpensive electrocatalysts. Owing to the unique electronic structure and catalytic mechanism, transition metal nitrides (TMNs) have been widely investigated as electrocatalysts for nitrogen reduction reaction (NRR) in recent years. However, to date, copper nitride-based materials are rarely reported for NRR. In this study, a three-dimensional self-supported copper nitride electrode (Cu3N/CF) was prepared by a simple one-step high-temperature nitridation of copper foam (CF). The structure and morphology of Cu3N/CF were systematically characterized and its NRR catalytic performance and stability were evaluated in neutral media. The results show that Cu3N/CF electrode achieves high ammonia generation rate (1.12 × 10−10 mol/(s·cm2) and faradaic efficiency (1.5%) at −0.2 V vs RHE in 0.1 mol/L Na2SO4. In addition, it also exhibits excellent electrocatalytic cycle stability and structural stability.
  • 加载中
    1. [1]

      ZHANG L H, YU F, SHIJU N R. Carbon-based catalysts for selective electrochemical nitrogen-to-ammonia conversion[J]. ACS Sustainable Chem Eng,2021,9(23):7687−7703.  doi: 10.1021/acssuschemeng.1c00575

    2. [2]

      LIU H M, LI W, LIU F, PEI Z X, SHI J, WANG Z J, HE D H, CHEN Y. Homogeneous, heterogeneous, and biological catalysts for electrochemical N2 reduction toward NH3 under ambient conditions[J]. ACS Catal,2019,9(6):5245−5267.  doi: 10.1021/acscatal.9b00994

    3. [3]

      SPAULDING D K, WECK G, LOUBEYRE P, DATCHI F, DUMAS P, HANFLAND M. Pressure-induced chemistry in a nitrogen-hydrogen host-guest structure[J]. Nat Commun,2014,5(1):1−7.

    4. [4]

      CUI X, TANG C, ZHANG Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions[J]. Adv Energy Mater,2018,8(22):1800369.  doi: 10.1002/aenm.201800369

    5. [5]

      GUO W H, ZHANG K X, LIANG Z B, ZOU R Q, XU Q. Electrochemical nitrogen fixation and utilization: theories, advanced catalyst materials and system design[J]. Chem Soc Rev,2019,48(24):5658−5716.  doi: 10.1039/C9CS00159J

    6. [6]

      HIRAKAWA H, HASHIMOTO M, SHIRAISHI Y, HIRAI T. Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide[J]. J Am Chem Soc,2017,139(31):10929−10936.  doi: 10.1021/jacs.7b06634

    7. [7]

      KE W, DANIEL S, ZHENG Y. Electron-driven heterogeneous catalytic synthesis of ammonia: Current states and perspective[J]. Carbon Resour Convers,2018,1(1):2−31.  doi: 10.1016/j.crcon.2018.06.004

    8. [8]

      LING C Y, NIU X H, LI Q, DU A J, WANG J L. Metal-free single atom catalyst for N2 fixation driven by visible light[J]. J Am Chem Soc,2018,140(43):14161−14168.  doi: 10.1021/jacs.8b07472

    9. [9]

      XIE Rui, CAO Bo, XU Xu, DUO Shu-wang. Research progress of electrocatalytic nitrogen fixation catalyst[J]. J Jiangxi Sci Technol Normal Univ,2020,,(6):26−29.

    10. [10]

      ZHAN Su, ZHANG Fu-xiang. Recent progress on electrocatalytic synthesis of ammonia under amibent conditions[J]. Acta Chim Sin,2021,79(2):146−157.  doi: 10.6023/A20090412

    11. [11]

      LIU Yang. Strategically increasing the efficiency of electrocatalytic ammonia synthesis under ambient contditions[D]. Nanning: Guangxi University, 2020.

    12. [12]

      WANG J, HUANG B L, JI Y J, SUN M Z, WU T, YIN R G, ZHU X, LI Y Y, SHAO Q, HUANG X Q. A general strategy to glassy M‐Te (M= Ru, Rh, Ir) porous nanorods for efficient electrochemical N2 fixation[J]. Adv Mater,2020,32(11):1907112.  doi: 10.1002/adma.201907112

    13. [13]

      LIU Y Y, WANG W K, ZHANG S B, LI W Y, WANG G Z, ZHANG Y X, HAN M M, ZHANG H M. MoS2 nanodots anchored on reduced graphene oxide for efficient N2 fixation to NH3[J]. ACS Sustainable Chem Eng,2020,8(5):2320−2326.  doi: 10.1021/acssuschemeng.9b07679

    14. [14]

      YANG X, NASH J, ANIBAL J, DUNWELL M, KATTEL S, STAVITSKI E, ATTENKOFER K, CHEN J G, YAN Y S, XU B J. Mechanistic insights into electrochemical nitrogen reduction reaction on vanadium nitride nanoparticles[J]. J Am Chem Soc,2018,140(41):13387−13391.  doi: 10.1021/jacs.8b08379

    15. [15]

      YANG M M, HUO R P, SHEN H D, XIA Q, QIU J S, ROBERTSON A W, LI X, SUN Z Y. Metal-tuned W18O49 for efficient electrocatalytic N2 reduction[J]. ACS Sustainable Chem Eng,2020,8(7):2957−2963.  doi: 10.1021/acssuschemeng.9b07526

    16. [16]

      WANG Y, JIA K, PAN Q, XU Y D, LIU Q, CUI G W, GUO X D, SUN X P. Boron-doped TiO2 for efficient electrocatalytic N2 fixation to NH3 at ambient conditions[J]. ACS Sustainable Chem Eng,2018,7(1):117−122.

    17. [17]

      DONG Guo-wen, CHEN Piao, REN Guo-ping, WANG Chao, JIN Shu-guang, YE Jie, ZHOU Shun-gui. Boron carbide promotes the ammonia production by electrocatalytic nitrogen fixation with Psendomonas Stutzeri A1501[J]. China Environ Science,2021,41(5):2449−2458.  doi: 10.3969/j.issn.1000-6923.2021.05.053

    18. [18]

      ZHAO C J, ZHANG S B, HAN M M, ZHANG X, LIU Y Y, CHEN C, WANG G Z, ZHANG H M, ZHAO H J. Ambient electrosynthesis of ammonia on a biomass-derived nitrogen-doped porous carbon electrocatalyst: contribution of pyridinic nitrogen[J]. ACS Energy Lett,2019,4(2):377−383.  doi: 10.1021/acsenergylett.8b02138

    19. [19]

      WU T W, LI X Y, ZHU X J, MOU S Y, LUO Y L, SHI X F, ASIRI A M, ZHANG Y N, ZHENG B Z, ZHAO H T, SUN X P. P-Doped graphene toward enhanced electrocatalytic N2 reduction[J]. Chem Commun,2020,56(12):1831−1834.  doi: 10.1039/C9CC09179C

    20. [20]

      ABGHOUI, Y, GARDEN A L, HLYNSSON V F, BJÖRGVINSDÓTTIR S, ÓLAFSDÓTTIR H, SKÚLASON E. Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design[J]. Phys Chem Chem Phys,2015,17(7):4909−4918.  doi: 10.1039/C4CP04838E

    21. [21]

      JIN H Y, LI L Q, LIU X, TANG C, XU W J, CHEN S M, SONG LI, ZHENG Y, QIAO S Z. Nitrogen vacancies on 2D layered W2N3: A stable and efficient active site for nitrogen reduction reaction[J]. Adv Mater,2019,31(32):1902709−1902716.  doi: 10.1002/adma.201902709

    22. [22]

      REN X, CUI G, CHEN L, XIE F Y, WEI Q, TIAN Z Q, SUN X P. Electrochemical N2 fixation to NH3 under ambient conditions: Mo2N nanorod as a highly efficient and selective catalyst[J]. Chem Commun,2018,54(61):8474−8477.  doi: 10.1039/C8CC03627F

    23. [23]

      SHENG H, OH M H, OSOWIECKI W T, KIM W Y, ALIVISATOS P, FREI H. Carbon dioxide dimer radical anion as surface intermediate of photoinduced CO2 reduction at aqueous Cu and CdSe nanoparticle catalysts by rapid-scan FT-IR spectroscopy[J]. J Am Chem Soc,2018,140(12):4363−4371.  doi: 10.1021/jacs.8b00271

    24. [24]

      MCCRORY, C C L, DEVADOSS A, OTTENWAELDER X, LOWE R D, STACK T D P, CHIDSEY C E D. Electrocatalytic O2 reduction by covalently immobilized mononuclear copper (I) complexes: Evidence for a binuclear Cu2O2 intermediate[J]. J Am Chem Soc,2011,133(11):3696−3699.  doi: 10.1021/ja106338h

    25. [25]

      LI C B, MOU S Y, ZHU X J, WANG F Y, WANG Y T, QIAO Y A, SHI X F, LUO Y L, ZHENG B Z, LI QUAN, SUN X P. Dendritic Cu: a high-efficiency electrocatalyst for N2 fixation to NH3 under ambient conditions[J]. Chem Commun,2019,55(96):14474−14477.  doi: 10.1039/C9CC08234D

    26. [26]

      LIU Y Q, HUANG L, ZHU X Y, FANG Y X, DONG S J. Coupling Cu with Au for enhanced electrocatalytic activity of nitrogen reduction reaction[J]. Nanoscale,2020,12(3):1811−1816.  doi: 10.1039/C9NR08788E

    27. [27]

      WANG F, LIU Y P, ZHANG H, CHU P K. CuO/graphene nanocomposite for nitrogen reduction reaction[J]. ChemCatChem,2019,11(5):1441−1447.  doi: 10.1002/cctc.201900041

    28. [28]

      ZHAO R B, GENG Q, CHANG L, WEI P P, LUO Y L, SHI X F, ASIRI A M, LU S Y, WANG Z M, SUN X P. Cu3P nanoparticle-reduced graphene oxide hybrid: an efficient electrocatalyst to realize N2 to NH3 conversion under ambient conditions[J]. Chem Commun,2020,56(65):9328−9331.  doi: 10.1039/D0CC04374E

    29. [29]

      YANG DASHUAI, TING CHEN, AND ZHIJIANG WANG. Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)-oriented Mo nanofilm[J]. J Mater Chem A,2017,5(36):18967−18971.  doi: 10.1039/C7TA06139K

    30. [30]

      JEONG E H, YOO C Y, JUNG C H, PARK J H, PARK Y C, KIM J N, OH S G, WOO Y M, YOON H C. Electrochemical ammonia synthesis mediated by titanocene dichloride in aqueous electrolytes under ambient conditions[J]. ACS Sustainable Chem Eng,2017,5(11):9662−9666.  doi: 10.1021/acssuschemeng.7b02908

    31. [31]

      ZHANG R, ZHANG Y, REN X, CUI G W, ASIRI A M, ZHENG B Z, SUN X P. High-efficiency electrosynthesis of ammonia with high selectivity under ambient conditions enabled by VN nanosheet array[J]. ACS Sustainable Chem Eng,2018,6(8):9545−9549.  doi: 10.1021/acssuschemeng.8b01261

    32. [32]

      CHEN S, PERATHONER S, AMPELLI C, MEBRAHTU C, SU D S, CENTI G. Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube-based electrocatalyst[J]. Angew Chem Int Ed,2017,56(10):2699−2703.  doi: 10.1002/anie.201609533

    33. [33]

      LIU Q, ZHANG X X, ZHANG B, LUO Y L CUI G W, XIE F Y, SUN X P. Ambient N2 fixation to NH3 electrocatalyzed by a spinel Fe3O4 nanorod[J]. Nanoscale,2018,10(30):14386−14389.  doi: 10.1039/C8NR04524K

    34. [34]

      ZHANG L, JI X Q, REN X, MA Y J, SHI X F, TIAN Z Q, ASIRI A M, CHEN L, TANG B, SUN X P. Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: Theoretical and experimental studies[J]. Adv Mater,2018,30(28):1800191.  doi: 10.1002/adma.201800191

    35. [35]

      KORDALI V, KYRIACOU G, LAMBROU C. Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell[J]. Chem Commun,2000,17:1673−1674.

    36. [36]

      ABGHOUI Y, GARDEN A L, HOWALT J G. Electroreduction of N2 to ammonia at ambient conditions on mononitrides of Zr, Nb, Cr, and V: A DFT guide for experiments[J]. ACS Catal,2016,6(2):635−646.  doi: 10.1021/acscatal.5b01918

  • 加载中
    1. [1]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    2. [2]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    3. [3]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    4. [4]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    5. [5]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    6. [6]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    7. [7]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    8. [8]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    9. [9]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    10. [10]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    11. [11]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    12. [12]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    13. [13]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    14. [14]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    15. [15]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    16. [16]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    17. [17]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    18. [18]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    19. [19]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    20. [20]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

Metrics
  • PDF Downloads(0)
  • Abstract views(258)
  • HTML views(67)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return