Fabrication of self-supported Cu3N electrode for electrocatalytic nitrogen reduction reaction
- Corresponding author: Lü-lü JI, llji@zstu.edu.cn
Citation:
Hui-yu HE, Sheng WANG, Lü-lü JI. Fabrication of self-supported Cu3N electrode for electrocatalytic nitrogen reduction reaction[J]. Journal of Fuel Chemistry and Technology,
;2022, 50(4): 484-493.
doi:
10.1016/S1872-5813(21)60152-4
ZHANG L H, YU F, SHIJU N R. Carbon-based catalysts for selective electrochemical nitrogen-to-ammonia conversion[J]. ACS Sustainable Chem Eng,2021,9(23):7687−7703.
doi: 10.1021/acssuschemeng.1c00575
LIU H M, LI W, LIU F, PEI Z X, SHI J, WANG Z J, HE D H, CHEN Y. Homogeneous, heterogeneous, and biological catalysts for electrochemical N2 reduction toward NH3 under ambient conditions[J]. ACS Catal,2019,9(6):5245−5267.
doi: 10.1021/acscatal.9b00994
SPAULDING D K, WECK G, LOUBEYRE P, DATCHI F, DUMAS P, HANFLAND M. Pressure-induced chemistry in a nitrogen-hydrogen host-guest structure[J]. Nat Commun,2014,5(1):1−7.
CUI X, TANG C, ZHANG Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions[J]. Adv Energy Mater,2018,8(22):1800369.
doi: 10.1002/aenm.201800369
GUO W H, ZHANG K X, LIANG Z B, ZOU R Q, XU Q. Electrochemical nitrogen fixation and utilization: theories, advanced catalyst materials and system design[J]. Chem Soc Rev,2019,48(24):5658−5716.
doi: 10.1039/C9CS00159J
HIRAKAWA H, HASHIMOTO M, SHIRAISHI Y, HIRAI T. Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide[J]. J Am Chem Soc,2017,139(31):10929−10936.
doi: 10.1021/jacs.7b06634
KE W, DANIEL S, ZHENG Y. Electron-driven heterogeneous catalytic synthesis of ammonia: Current states and perspective[J]. Carbon Resour Convers,2018,1(1):2−31.
doi: 10.1016/j.crcon.2018.06.004
LING C Y, NIU X H, LI Q, DU A J, WANG J L. Metal-free single atom catalyst for N2 fixation driven by visible light[J]. J Am Chem Soc,2018,140(43):14161−14168.
doi: 10.1021/jacs.8b07472
XIE Rui, CAO Bo, XU Xu, DUO Shu-wang. Research progress of electrocatalytic nitrogen fixation catalyst[J]. J Jiangxi Sci Technol Normal Univ,2020,,(6):26−29.
ZHAN Su, ZHANG Fu-xiang. Recent progress on electrocatalytic synthesis of ammonia under amibent conditions[J]. Acta Chim Sin,2021,79(2):146−157.
doi: 10.6023/A20090412
LIU Yang. Strategically increasing the efficiency of electrocatalytic ammonia synthesis under ambient contditions[D]. Nanning: Guangxi University, 2020.
WANG J, HUANG B L, JI Y J, SUN M Z, WU T, YIN R G, ZHU X, LI Y Y, SHAO Q, HUANG X Q. A general strategy to glassy M‐Te (M= Ru, Rh, Ir) porous nanorods for efficient electrochemical N2 fixation[J]. Adv Mater,2020,32(11):1907112.
doi: 10.1002/adma.201907112
LIU Y Y, WANG W K, ZHANG S B, LI W Y, WANG G Z, ZHANG Y X, HAN M M, ZHANG H M. MoS2 nanodots anchored on reduced graphene oxide for efficient N2 fixation to NH3[J]. ACS Sustainable Chem Eng,2020,8(5):2320−2326.
doi: 10.1021/acssuschemeng.9b07679
YANG X, NASH J, ANIBAL J, DUNWELL M, KATTEL S, STAVITSKI E, ATTENKOFER K, CHEN J G, YAN Y S, XU B J. Mechanistic insights into electrochemical nitrogen reduction reaction on vanadium nitride nanoparticles[J]. J Am Chem Soc,2018,140(41):13387−13391.
doi: 10.1021/jacs.8b08379
YANG M M, HUO R P, SHEN H D, XIA Q, QIU J S, ROBERTSON A W, LI X, SUN Z Y. Metal-tuned W18O49 for efficient electrocatalytic N2 reduction[J]. ACS Sustainable Chem Eng,2020,8(7):2957−2963.
doi: 10.1021/acssuschemeng.9b07526
WANG Y, JIA K, PAN Q, XU Y D, LIU Q, CUI G W, GUO X D, SUN X P. Boron-doped TiO2 for efficient electrocatalytic N2 fixation to NH3 at ambient conditions[J]. ACS Sustainable Chem Eng,2018,7(1):117−122.
DONG Guo-wen, CHEN Piao, REN Guo-ping, WANG Chao, JIN Shu-guang, YE Jie, ZHOU Shun-gui. Boron carbide promotes the ammonia production by electrocatalytic nitrogen fixation with Psendomonas Stutzeri A1501[J]. China Environ Science,2021,41(5):2449−2458.
doi: 10.3969/j.issn.1000-6923.2021.05.053
ZHAO C J, ZHANG S B, HAN M M, ZHANG X, LIU Y Y, CHEN C, WANG G Z, ZHANG H M, ZHAO H J. Ambient electrosynthesis of ammonia on a biomass-derived nitrogen-doped porous carbon electrocatalyst: contribution of pyridinic nitrogen[J]. ACS Energy Lett,2019,4(2):377−383.
doi: 10.1021/acsenergylett.8b02138
WU T W, LI X Y, ZHU X J, MOU S Y, LUO Y L, SHI X F, ASIRI A M, ZHANG Y N, ZHENG B Z, ZHAO H T, SUN X P. P-Doped graphene toward enhanced electrocatalytic N2 reduction[J]. Chem Commun,2020,56(12):1831−1834.
doi: 10.1039/C9CC09179C
ABGHOUI, Y, GARDEN A L, HLYNSSON V F, BJÖRGVINSDÓTTIR S, ÓLAFSDÓTTIR H, SKÚLASON E. Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design[J]. Phys Chem Chem Phys,2015,17(7):4909−4918.
doi: 10.1039/C4CP04838E
JIN H Y, LI L Q, LIU X, TANG C, XU W J, CHEN S M, SONG LI, ZHENG Y, QIAO S Z. Nitrogen vacancies on 2D layered W2N3: A stable and efficient active site for nitrogen reduction reaction[J]. Adv Mater,2019,31(32):1902709−1902716.
doi: 10.1002/adma.201902709
REN X, CUI G, CHEN L, XIE F Y, WEI Q, TIAN Z Q, SUN X P. Electrochemical N2 fixation to NH3 under ambient conditions: Mo2N nanorod as a highly efficient and selective catalyst[J]. Chem Commun,2018,54(61):8474−8477.
doi: 10.1039/C8CC03627F
SHENG H, OH M H, OSOWIECKI W T, KIM W Y, ALIVISATOS P, FREI H. Carbon dioxide dimer radical anion as surface intermediate of photoinduced CO2 reduction at aqueous Cu and CdSe nanoparticle catalysts by rapid-scan FT-IR spectroscopy[J]. J Am Chem Soc,2018,140(12):4363−4371.
doi: 10.1021/jacs.8b00271
MCCRORY, C C L, DEVADOSS A, OTTENWAELDER X, LOWE R D, STACK T D P, CHIDSEY C E D. Electrocatalytic O2 reduction by covalently immobilized mononuclear copper (I) complexes: Evidence for a binuclear Cu2O2 intermediate[J]. J Am Chem Soc,2011,133(11):3696−3699.
doi: 10.1021/ja106338h
LI C B, MOU S Y, ZHU X J, WANG F Y, WANG Y T, QIAO Y A, SHI X F, LUO Y L, ZHENG B Z, LI QUAN, SUN X P. Dendritic Cu: a high-efficiency electrocatalyst for N2 fixation to NH3 under ambient conditions[J]. Chem Commun,2019,55(96):14474−14477.
doi: 10.1039/C9CC08234D
LIU Y Q, HUANG L, ZHU X Y, FANG Y X, DONG S J. Coupling Cu with Au for enhanced electrocatalytic activity of nitrogen reduction reaction[J]. Nanoscale,2020,12(3):1811−1816.
doi: 10.1039/C9NR08788E
WANG F, LIU Y P, ZHANG H, CHU P K. CuO/graphene nanocomposite for nitrogen reduction reaction[J]. ChemCatChem,2019,11(5):1441−1447.
doi: 10.1002/cctc.201900041
ZHAO R B, GENG Q, CHANG L, WEI P P, LUO Y L, SHI X F, ASIRI A M, LU S Y, WANG Z M, SUN X P. Cu3P nanoparticle-reduced graphene oxide hybrid: an efficient electrocatalyst to realize N2 to NH3 conversion under ambient conditions[J]. Chem Commun,2020,56(65):9328−9331.
doi: 10.1039/D0CC04374E
YANG DASHUAI, TING CHEN, AND ZHIJIANG WANG. Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)-oriented Mo nanofilm[J]. J Mater Chem A,2017,5(36):18967−18971.
doi: 10.1039/C7TA06139K
JEONG E H, YOO C Y, JUNG C H, PARK J H, PARK Y C, KIM J N, OH S G, WOO Y M, YOON H C. Electrochemical ammonia synthesis mediated by titanocene dichloride in aqueous electrolytes under ambient conditions[J]. ACS Sustainable Chem Eng,2017,5(11):9662−9666.
doi: 10.1021/acssuschemeng.7b02908
ZHANG R, ZHANG Y, REN X, CUI G W, ASIRI A M, ZHENG B Z, SUN X P. High-efficiency electrosynthesis of ammonia with high selectivity under ambient conditions enabled by VN nanosheet array[J]. ACS Sustainable Chem Eng,2018,6(8):9545−9549.
doi: 10.1021/acssuschemeng.8b01261
CHEN S, PERATHONER S, AMPELLI C, MEBRAHTU C, SU D S, CENTI G. Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube-based electrocatalyst[J]. Angew Chem Int Ed,2017,56(10):2699−2703.
doi: 10.1002/anie.201609533
LIU Q, ZHANG X X, ZHANG B, LUO Y L CUI G W, XIE F Y, SUN X P. Ambient N2 fixation to NH3 electrocatalyzed by a spinel Fe3O4 nanorod[J]. Nanoscale,2018,10(30):14386−14389.
doi: 10.1039/C8NR04524K
ZHANG L, JI X Q, REN X, MA Y J, SHI X F, TIAN Z Q, ASIRI A M, CHEN L, TANG B, SUN X P. Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: Theoretical and experimental studies[J]. Adv Mater,2018,30(28):1800191.
doi: 10.1002/adma.201800191
KORDALI V, KYRIACOU G, LAMBROU C. Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell[J]. Chem Commun,2000,17:1673−1674.
ABGHOUI Y, GARDEN A L, HOWALT J G. Electroreduction of N2 to ammonia at ambient conditions on mononitrides of Zr, Nb, Cr, and V: A DFT guide for experiments[J]. ACS Catal,2016,6(2):635−646.
doi: 10.1021/acscatal.5b01918
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
Xueting Cao , Shuangshuang Cha , Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
Jianchun Wang , Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Fanpeng Meng , Fei Zhao , Jingkai Lin , Jinsheng Zhao , Huayang Zhang , Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
Linjie ZHU , Xufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207
Runhua Chen , Qiong Wu , Jingchen Luo , Xiaolong Zu , Shan Zhu , Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
.
CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级
. CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.