Citation: Xiao-yun LI, Qi-feng LI, Yu-hua ZHAO, Mao-qing KANG, Jun-wei WANG. Utilization of carbon dioxide in polyurethane[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(2): 195-209. doi: 10.1016/S1872-5813(21)60145-7 shu

Utilization of carbon dioxide in polyurethane

  • Corresponding author: Jun-wei WANG, wangjw@sxicc.ac.cn
  • Received Date: 7 June 2021
    Revised Date: 16 July 2021

Figures(17)

  • With the rapid development of modern society, the demand for energy is increasing. Currently, fossil fuel is still the dominant energy in developing countries. Moreover, the greenhouse effect and environmental problems result from excessive emission of carbon dioxide by the combustion of fossil resources have arouse worldwide concern. Therefore, utilization of carbon dioxide has attracted much attention. Among the paths, the preparation of polymers from carbon dioxide could not only realize the carbon fixation, but also provide a new approach for the green production of polymer. This review aims to summarize the progress on the synthesis of polyurethane from carbon dioxide, which mainly focuses on its physical and chemical applications in materials and the preparation technologies.
  • 加载中
    1. [1]

      Editorial Department of China Environment. Take concrete actions to make due contribution to the global response to climate change[J]. China Environ,2021,(Z1):467.

    2. [2]

      NAIR M, ARVIN M B, PRADHAN R P, BAHMANI S. Is higher economic growth possible through better institutional quality and a lower carbon footprint? Evidence from developing countries[J]. Renewable Energy,2020,167(2):132−145.

    3. [3]

      LINN J. Interactions between climate and local air pollution policies: the case of european passenger cars[J]. Discussion Papers,2016,16−51.

    4. [4]

      FRIEDLINGSTEIN P O, SULLIVAN M, JONES M W, ANDREW R M, ZAEHLE S. Global carbon budget 2020[J]. Earth Syst Sci Data,2020,12(4):3269−3340.  doi: 10.5194/essd-12-3269-2020

    5. [5]

      DAVIS S J, CALDEIRA K, MATTHEWS H D. Future CO2 emissions and climate change from existing energy infrastructure[J]. Science,2010,329(5997):1330−1333.  doi: 10.1126/science.1188566

    6. [6]

      BETTS R A, JONES C D, KNIGHT J R, KEELING R F, KENNEDY J J. El Niño and a record CO2 rise[J]. Nat Clim Change,2016,6(9):806−810.  doi: 10.1038/nclimate3063

    7. [7]

      HE M Y, SUN Y H, HAN B X. Green carbon science: scientific basis for integrating carbon resource processing, utilization, and recycling[J]. Angew Chem Int Ed,2013,52(37):9620−9633.  doi: 10.1002/anie.201209384

    8. [8]

      HEPBURN C, ADLEN E, BEDDINGTON J, CARTER E A, FUSS S, DOWELL N M, MINX J C, SMITH P, CHARLOTTE K. The technological and economic prospects for CO2 utilization and removal[J]. Nature,2019,575(7781):87−97.  doi: 10.1038/s41586-019-1681-6

    9. [9]

      ANDRES G T, ANNA R, EDWARD R W, DAVID J P, MILO S P, WILLIAMS C K. Pd in intermentallic nanoparticles for the hydrogenation of CO2 to methanol[J]. Appl Catal B: Environ,2018,220:9−18.  doi: 10.1016/j.apcatb.2017.07.069

    10. [10]

      HUANG Jian. Production status and developing trend of global methanol industry[J]. China Chem Trade,2017,9(35):5−6.  doi: 10.3969/j.issn.1674-5167.2017.35.004

    11. [11]

      SALLY M B, FRANKLIN M O J. Carbon dioxide capture and storage[J]. MRS Bull,2008,33(4):303−305.  doi: 10.1557/mrs2008.63

    12. [12]

      LI Yang. Key utilization of CCUS[J]. China Pet,2018,(23):17−19.

    13. [13]

      POROSOFF M, YAN B, CHEN J. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities[J]. Energy Environ Sci,2016,9(1):62−73.  doi: 10.1039/C5EE02657A

    14. [14]

      MEYLAN F D, MOREAU V, ERKMAN S. CO2 utilization in the perspective of industrial ecology, an overview[J]. J CO2 Util,2015,12:101−108.  doi: 10.1016/j.jcou.2015.05.003

    15. [15]

      WANG W, QU Z, SONG L, FU Q. CO2 hydrogenation to methanol over Cu/CeO2 and Cu/ZrO2 catalysts: Tuning methanol selectivity via metal-support interaction[J]. J Energy Chem,2020,40(1):22−30.

    16. [16]

      SAKAKURA T, CHOI J C, YASUDA H. Transformation of carbon dioxide[J]. Chem Rev,2007,107(6):2365−2387.  doi: 10.1021/cr068357u

    17. [17]

      XIN H, SHEN Y D, LI X R. Synthesis and properties of cationic polyurethane-fluorinated acrylic hybrid latexes by emulsifier-free emulsion polymerization and the solvent-free method[J]. Polym Bull,2011,67(9):1849−1863.  doi: 10.1007/s00289-011-0523-y

    18. [18]

      JAUDOUIN O, ROBIN J J, LOPEZ-CUESTA J M, PERRIN D, IMBERT C. Ionomer-based polyurethanes: A comparative study of properties and applications[J]. Polym Int,2012,61(4):495−510.  doi: 10.1002/pi.4156

    19. [19]

      DAI J B, ZHANG X Y, CHAO J, BAI C Y. A new core-shell type fluorinated acrylic and siliconated polyurethane hybrid emulsion[J]. J Coat Technol Res,2007,4(3):283−288.  doi: 10.1007/s11998-007-9042-z

    20. [20]

      LI Zuo-hua. Production process and equipment of flexible polyurethane foam using liquid carbon dioxide as foaming agent[J]. Polyurethane ind,2006,21(1):39−41.  doi: 10.3969/j.issn.1005-1902.2006.01.011

    21. [21]

      SHEN Chen-guang, CHEN Jun, CHEN Jin-yan, XIANG Ming-hua, LUO Zhen-yang. Study on liquid CO2 assisting water blown spray PU rigid foam[J]. Polyurethane Ind,2017,32(4):8−11.  doi: 10.3969/j.issn.1005-1902.2017.04.003

    22. [22]

      LIU Fei, ZHANG Yong-bing, ZHANG Xing-gang. Research progress on low viscosity water blown rigid polyurethane foams stuff[J]. Dev Appl Mater,2017,32(1):109−112.

    23. [23]

      ZHANG Qing, LIU Chao, LONG Yuan-zhu, FAN Cui-rong, XIE Xing-yi. CO2 adducts instead of HFC-365mfc as blowing agents for polyurethane foams[J]. Polyurethane Ind,2017,32(B05):52−56.

    24. [24]

      LONG Y, AN J, XIE X. CO2-releasing blowing agents from modified polyethylenimines slightly consume isocyanate groups while foaming polyurethanes[J]. Arab J Chem,2020,13(1):3226−3235.  doi: 10.1016/j.arabjc.2018.10.007

    25. [25]

      BI Ge-hua, BI Yu-sui, CHEN Tang-jian, ZHAI Zhi-qiang. Formic acid organic amine salts and their uses as blowing agents: CN, 201610387843.0[P]. 2017-08-25.

    26. [26]

      FU Y P, PALO D R, ERKEY C, WEISS R A. Synthesis of conductive polypyrrole/polyurethane foams via a supercritical fluid process[J]. Macromolecules,1997,30(24):7611−7613.  doi: 10.1021/ma9710747

    27. [27]

      WATKINS J J, MCCARTHY T J. Polymer/Metal nanocomposite synthesis in supercritical CO2[J]. Chem Mater,1995,7(11):1991−1994.  doi: 10.1021/cm00059a001

    28. [28]

      HANSEN B N, HYBERTSON B M, BARKLEY R M, SIEVERS R E. Supercritical fluid transport-chemical deposition of films[J]. Chem Mater,1992,4(4):749−752.  doi: 10.1021/cm00022a003

    29. [29]

      BOGGESS R K, TAYLOR L T, STOAKLEY D M, CLAIR A. Highly reflective polyimide films created by supercritical fluid infusion of a silver additive[J]. J Appl Polym Sci,1997,64(7):1309−1317.  doi: 10.1002/(SICI)1097-4628(19970516)64:7<1309::AID-APP10>3.0.CO;2-S

    30. [30]

      CHEN Li-ban. Synthesis properties and applications of CO2 copolymers[J]. Polym Bull,1999,3:128−133.

    31. [31]

      VON DER A N, BARDOW A. Life cycle assessment of polyols for polyurethane production using CO2 as feedstock: insights from an industrial case study[J]. Green Chem,2014,16(6):3272−3280.  doi: 10.1039/C4GC00513A

    32. [32]

      TAKEDA N, INOUE S. Polymerization of 1, 2-epoxypropane and copolymerization with carbon dioxide catalyzed by metalloporphyrins[J]. Macromol Chem Phys,1978,179(5):1377−1381.  doi: 10.1002/macp.1978.021790529

    33. [33]

      CHEN K H, SHI G L, LI H R, WANG C M, DARENSBOURG D J. Design of betaine functional catalyst for efficient copolymerization of oxirane and CO2[J]. Macromolecules,2018,51(15):6057−6062.  doi: 10.1021/acs.macromol.8b01103

    34. [34]

      BRANDES B D, JACOBEN E N. Synthesis of enantiopure 3-chlorostyrene oxide via an asymmetric epoxidation-hydrolytic kinetic resolution sequence[J]. Tetrahedron-Asymmetry,1997,8(23):3927−3933.  doi: 10.1016/S0957-4166(97)00568-5

    35. [35]

      SUJITH S, MIN J K, SEONG J E, NA S J, LEE B Y. A highly active and recyclable catalytic system for CO2/propylene oxide copolymerization[J]. Angew Chem Int Ed,2008,47(38):7306−7309.  doi: 10.1002/anie.200801852

    36. [36]

      MOORE D R, CHENG M, LOBKOVSKY E B, COATES G W. Electronic and steric effects on catalysts for CO2/epoxide polymerization: subtle modifications resulting in superior activities[J]. Angew Chem Int Ed,2002,41(14):2599−2602.  doi: 10.1002/1521-3773(20020715)41:14<2599::AID-ANIE2599>3.0.CO;2-N

    37. [37]

      ALLEN S D, MOORE D R, LOBKOVSKY E B, COATES G W. High-activity, single-site catalysts for the alternating copolymerization of CO2 and propylene oxide[J]. J Am Chem Soc,2002,124(48):14284−14285.  doi: 10.1021/ja028071g

    38. [38]

      PAN X, LIU Z, CHENG R, YANG Y, ZHONG L, HE X L, LIU B P. Mechanism for alternating copolymerization of CO2 and propylene oxide in diethylzinc-water catalytic system: A DFT study[J]. J CO2 Util,2013,2:39−48.  doi: 10.1016/j.jcou.2013.07.004

    39. [39]

      CHEN X, SHEN Z, ZHANG Y. New catalytic systems for the fixation of carbon dioxide. 1. copolymerization of CO2 and propylene oxide with new rare-earth catalysts-RE(P204)3-Al(i-Bu)3-R(OH)n[J]. Macromolecules,1991,24(19):5305−5308.  doi: 10.1021/ma00019a014

    40. [40]

      LU H W, QIN Y S, WANG X H, YANG X G, ZHANG S B, WANG F S. Copolymerization of carbon dioxide and propylene oxide under inorganic oxide supported rare earth ternary catalyst[J]. J Polym Sci Pol Chem,2011,49(17):3797−3804.  doi: 10.1002/pola.24817

    41. [41]

      SONG Peng-fei, JI Xiao-qing, SUN Wen-jing, MAO Xu-dong, LIU Xiao-jun, WANG Rong-min. Copolymerization of carbon dioxide and propyleneoxide catalyzed by modified zinc glutarate[J]. New Chem Mater,2013,41(9):157−159.  doi: 10.3969/j.issn.1006-3536.2013.09.052

    42. [42]

      LIM J, YUN S H, KIM M R, KIM II. Synthesis of Polycarbonate Polyols by Double-Metal Cyanide Catalyzed Copolymerization of Epoxide with Carbon Dioxide[J]. J Nanosci Nanotechnol,2017,17(10):7507−7514.  doi: 10.1166/jnn.2017.14796

    43. [43]

      MANG S, COOPER A I, EAMON C M, CHAUHAN N, HOLMES A B. Copolymerization of CO2 and 1,2-cyclohexene oxide using a CO2-soluble chromium porphyrin catalyst[J]. Macromolecules,2000,33(2):303−308.  doi: 10.1021/ma991162m

    44. [44]

      CHEN P, CHISHOLM M H, GALLUCCI J C, ZHANG X Y, ZHOU Z P. Binding of propylene oxide to porphyrin- and salen-M(III) cations, Where M = Al, Ga, Cr, and Co[J]. Inorg Chem,2005,44(8):2588−2595.  doi: 10.1021/ic048597x

    45. [45]

      SUGIMOTO H, KURODA K. The cobalt porphyrin-Lewis base system: A highly selective catalyst for alternating copolymerization of CO2 and epoxide under mild conditions[J]. Macromolecules,2008,41(2):312−317.  doi: 10.1021/ma702354s

    46. [46]

      GUO Hong-chen, QIN Yu-sheng, WANG Xian-hong, WANG Fu-song. Copolymerization of carbon dioxide and propylene oxide under aluminum porphyrin catalyst[J]. Chin J Appl Chem,2019,36(10):1118−1127.  doi: 10.11944/j.issn.1000-0518.2019.10.190031

    47. [47]

      MILGROM J. Method of making a polyether using a double metal cyanide complex compound: US, 3278457[P]. 1966-11-10.

    48. [48]

      CHEN S, HUA Z J, FANG Z, QI G R. Copolymerization of carbon dioxide and propylene oxide with highly effective zinc hexacyanocobaltate(III)-based coordination catalyst[J]. Polymer,2004,45(19):6519−6524.  doi: 10.1016/j.polymer.2004.07.044

    49. [49]

      GAO Y G, QIN Y S, ZHAO X J, WANG F S, WANG X H. Selective synthesis of oligo(carbonate-ether) diols from copolymerization of CO2 and propylene oxide under zinc-cobalt double metal cyanide complex[J]. J Polym Res,2012,19(5):9878−9886.  doi: 10.1007/s10965-012-9878-5

    50. [50]

      OH H J, KO Y S. Effect of polymerization conditions on the polymer properties of CO2-cyclohexene oxide copolymer prepared by double metal cyanide catalyst[J]. J Ind Eng Chem,2013,19(6):1939−1943.  doi: 10.1016/j.jiec.2013.03.002

    51. [51]

      KRUPER W, SWART D J. Carbon dioxide oxirane copolymers prepared using double metal cyanide complexes: US, 4500704[P]. 1985-02-19.

    52. [52]

      GAO Y G, GU L, QIN Y S, WANG X H, WANG F S. Dicarboxylic acid promoted immortal copolymerization for controllable synthesis of low-molecular weight oligo(carbonate-ether) diols with tunable carbonate unit content[J]. J Polym Sci Pol Chem,2012,50(24):5177−5184.  doi: 10.1002/pola.26366

    53. [53]

      FU Shuang-bin, QIN Yu-sheng, QIAO Li-jun, WANG Xian-hong, WANG Fu-song. Synthesis of high primary hydroxyl content poly(carbonate-ether) polyol[J]. Acta Polym Sin,2019,50(4):338−343.  doi: 10.11777/j.issn1000-3304.2018.18274

    54. [54]

      Li Z F, QIN Y S, ZHAO X J, WANG F S, ZHANG S B, WANG X H. Synthesis and stabilization of high-molecular-weight poly(propylene carbonate) from ZnCo-based double metal cyanide catalyst[J]. Eur Polym J,2011,47(11):2152−2157.  doi: 10.1016/j.eurpolymj.2011.08.004

    55. [55]

      YOU Xing-chen. Copolymerization of carbon dioxide and propylene oxide over double mental cyanide catalyst prepared by microemulsion method for the synthesis of polypropylene carbonate polyols[D]. Shanghai: East China University of Science and Technology, 2013.

    56. [56]

      AN Na. The catalytic synthesis and application properties study of carbon dioxide-based poly(ether-carbonate) polyols[D]. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Science, 2019.

    57. [57]

      WANG J, ZHANG H M, MIAO Y Y, QIAO L J, WANG X H, WANG F S. UV-curable waterborne polyurethane from CO2-polyol with high hydrolysis resistance[J]. Polymer,2016,100:219−226.  doi: 10.1016/j.polymer.2016.08.039

    58. [58]

      WANG J, ZHANG H M, MIAO Y Y, QIAO L J, WANG X H, WANG F S. Waterborne polyurethanes from CO2 based polyols with comprehensive hydrolysis/oxidation resistance[J]. Green Chem,2016,18(2):524−530.  doi: 10.1039/C5GC01373A

    59. [59]

      ALAGI P, GHORPADE R, CHOI Y J, PATIL U, KIM Ⅱ, BAIK J H, HONG S C. Carbon dioxide-based polyols as sustainable feedstock of thermoplastic polyurethane for corrosion-resistant metal coating[J]. ACS Sustainable Chem Eng,2017,5(5):3871−3881.  doi: 10.1021/acssuschemeng.6b03046

    60. [60]

      LANGANKE J, WOLF A, HOFMANN J, BOHM K, SUBHANI M A, MULLER T E, LEITNER W, GURTLER C. Carbon dioxide (CO2) as sustainable feedstock for polyurethane production[J]. Green Chem,2014,16(4):1865−1870.  doi: 10.1039/C3GC41788C

    61. [61]

      CAO Han, GONG Ru-nan, ZHOU Zhen-zhen, WANG Xian-hong, WANG Fu-song. Precise synthesis of functional carbon dioxide-polyols[J]. Acta Polym Sin,2021,52(8):1006−1014.

    62. [62]

      LIU S J, MIAO Y Y, QIAO L J, QIN Y S, WANG X H, CHEN X S, WANG F S. Controllable synthesis of a narrow polydispersity CO2-based oligo(carbonate-ether) tetraol[J]. Polym Chem,2015,6(43):7580−7585.  doi: 10.1039/C5PY00556F

    63. [63]

      LIU S J, QIN Y S, MIAO Y Y, QIAO L J, WANG X H. Cheap and fast: Oxalic acid initiated CO2-based polyols synthesized by a novel preactivation approach[J]. Polym Chem,2016,7(1):146−152.  doi: 10.1039/C5PY01338K

    64. [64]

      DIENES Y, LEITNER W, MULLER M G J, OFFERMANS W K, REIER T, REINHOLDT A, WEIRICH T E, MULLER T E. Hybrid sol-gel double metal cyanide catalysts for the copolymerisation of styrene oxide and CO2[J]. Green Chem,2012,14(4):1168−1177.  doi: 10.1039/c2gc16485j

    65. [65]

      LAMBETH R H, HENDERSON T J. Organocatalytic synthesis of (poly)hydroxyurethanes from cyclic carbonates and amines[J]. Polymer,2013,54(21):5568−5573.  doi: 10.1016/j.polymer.2013.08.053

    66. [66]

      TOMITA H, SANDA F, ENDO T. Model reaction for the synthesis of polyhydroxyurethanes from cyclic carbonates with amines: Substituent effect on the reactivity and selectivity of ring-opening direction in the reaction of five-membered cyclic carbonates with amine[J]. J Polym Sci -Pol Chem,2001,39(21):3678−3685.  doi: 10.1002/pola.10009

    67. [67]

      MATSUKIZONO H, ENDO T. Phosgene-free syntheses and hydrolytic properties of water-soluble polyhydroxyurethanes with ester-carbonate-ether structures in their main chains[J]. Macromol Chem Phys,2017,218(18):1700043.  doi: 10.1002/macp.201700043

    68. [68]

      KIM M R, KIM H S, PARK D W, LEE J K. Synthesis of cyclic carbonates based on diglycidyl ether of bisphenols by quaternary ammonium salts[J]. React Kinet Catal L,2001,72(2):373−381.  doi: 10.1023/A:1010575820818

    69. [69]

      WILLIAMS C K, HILLMYER M A. Polymers from renewable resources: A perspective for a special issue of polymer reviews[J]. Polym Rev,2008,48(1):1−10.  doi: 10.1080/15583720701834133

    70. [70]

      BAUMANN H, BUHLER M, FOCHEM H, HIRSINGER F, ZOEBELEIN H, FALBE J. Natural fats and oils-renewable raw materials for the chemical industry[J]. Angew Chem Int Ed,2010,27(1):41−62.

    71. [71]

      SI-TU Yue, HUANG Hong, HU Jianfeng, FU He-qing, CHEN Huan-qin. Research progress of polymer synthesis based on plant oil[J]. Fine Chem,2006,23(11):1041−1047.  doi: 10.3321/j.issn:1003-5214.2006.11.001

    72. [72]

      LI Zhen-rong, ZHAO Yu-hua, KANG Mao-qing, WANG Jun-wei, LI Qi-feng, WANG Xin-kui, XIANG Hong-wei. Study on blends of five-membered carbonated soybean oil/DGEBA[J]. New Chem Mater,2009,37(10):46−48.  doi: 10.3969/j.issn.1006-3536.2009.10.016

    73. [73]

      OCHIAI B, SATO S I, ENDO T. Synthesis and properties of polyurethanes bearing urethane moieties in the side chain[J]. J Polym Sci -Pol Chem,2010,45(15):3408−3414.

    74. [74]

      ZHU H, CHEN L B, JIANG Y Y. Synthesis of propylene carbonate and some dialkyl carbonates in the presence of bifunctional catalyst compositions[J]. Polym Adv Technol,2015,7(8):701−703.

    75. [75]

      YUE C T, SU D, ZHANG X, WU W, XIAO L F. Amino-functional imidazolium ionic liquids for CO2 activation and conversion to form cyclic carbonate[J]. Catal Lett,2014,144(7):1313−1321.  doi: 10.1007/s10562-014-1241-5

    76. [76]

      LI F W, XIAO L F, XIA C G, HU B. Chemical fixation of CO2 with highly efficient ZnCl2/[BMIm]Br catalyst system[J]. Tetrahedron Lett,2004,45(45):8307−8310.  doi: 10.1016/j.tetlet.2004.09.074

    77. [77]

      QIN Y S, GUO H C, SHENG X F, WANG X H, WANG F S. An aluminum porphyrin complex with high activity and selectivity for cyclic carbonate synthesis[J]. Green Chem,2015,17(5):2853−2858.  doi: 10.1039/C4GC02310B

    78. [78]

      CRUZ-MARTINEZ F D L, MARTINEZ J, GAONA M A, FERMANDE-BAEZA J, SANCHEZ-BARBA L F, RODRIGUEZ ANA M, CASTRO-OSMA J A, OTERO A, LARA-SANCHEZ A. Bifunctional aluminum catalysts for the chemical fixation of carbon dioxide into cyclic carbonates[J]. ACS Sustainable Chem Eng,2018,6(4):5322−5332.  doi: 10.1021/acssuschemeng.8b00102

    79. [79]

      DAI W L, YIN S F, GUO R, LUO S L, DU X, AU C T. Synthesis of Propylene carbonate from carbon dioxide and propylene oxide using Zn-Mg-Al composite oxide as high-efficiency catalyst[J]. Catal Lett,2010,136(1):35−44.

    80. [80]

      MA D C, LI B Y, LIU K, ZHANG X L, ZOU W J, YANG Y Q, LI G H, SHI Z, FENG S H. Bifunctional MOF heterogeneous catalysts based on the synergy of dual functional sites for efficient conversion of CO2 under mild and co-catalyst free conditions[J]. J Mater Chem A,2015,3(46):23136−23142.  doi: 10.1039/C5TA07026K

    81. [81]

      MAI T, DAVIS R J. Cycloaddition of CO2 to epoxides over solid base catalysts[J]. J Catal,2001,199(1):85−91.  doi: 10.1006/jcat.2000.3145

    82. [82]

      SONG J L, ZHANG Z F, HU S Q, WU T B, JIANG T, HAN B X. ChemInform Abstract: MOF-5/n-Bu4NBr: An efficient catalyst system for the synthesis of cyclic carbonates from epoxides and CO2 under mild conditions[J]. ChemInform,2009,40(46):1031−1036.

    83. [83]

      ZHU J J, XIAO P, LI H L, CARABINEIRO S A C. Graphitic carbon nitride: Synthesis, properties, and applications in catalysis[J]. ACS Appl Mater Inter,2014,6(19):16449−16465.  doi: 10.1021/am502925j

    84. [84]

      KIHARA N, HARA N, ENDO T. Catalytic activity of various salts in the reaction of 2,3-epoxypropyl phenyl ether and carbon dioxide under atmospheric pressure[J]. J Org Chem,1993,58(23):6198−6202.  doi: 10.1021/jo00075a011

    85. [85]

      OCHIAI B, INOUE S, ENDO T. One-pot non-isocyanate synthesis of polyurethanes from bisepoxide, carbon dioxide, and diamine[J]. J Polym Sci Pol Chem,2005,43(24):6613−6618.  doi: 10.1002/pola.21103

    86. [86]

      CALO V, NACCI A, MONOPOLI A, FANIZZI A. Cyclic carbonate formation from carbon dioxide and oxiranes in tetrabutylammonium halides as solvents and catalysts[J]. Org Lett,2002,4(15):2561−2563.  doi: 10.1021/ol026189w

    87. [87]

      TAO C, JING H W, JIN L L, QIU W Y. Quaternary onium tribromide catalyzed cyclic carbonate synthesis from carbon dioxide and epoxides[J]. J Mol Catal A: Chem,2007,264(1/2):241−247.  doi: 10.1016/j.molcata.2006.08.089

    88. [88]

      CHANG Tao, WU Mei, JIN Li-li, JING Huan-wang, QIU Wen-yuan. ZnBr2-quaternary onium tribromide salt as a catalyst for the coupling reaction of carbon dioxide and epoxides[J]. Chin J Catal,2007,28(5):404−406.  doi: 10.3321/j.issn:0253-9837.2007.05.006

    89. [89]

      PENG Y, JING H W. Catalytic asymmetric cycloaddition of carbon dioxide and propylene oxide using novel chiral polymers of BINOL-Salen-Cobalt(III) Salts[J]. Adv Synth Catal,2009,351(10):1325−1332.

    90. [90]

      ZHANG S L, HUANG Y Z, JING H W, YAO W X, YAN P. Chiral ionic liquids improved the asymmetric cycloaddition of CO2 to epoxides[J]. Green Chem,2009,11(7):935−938.  doi: 10.1039/b821513h

    91. [91]

      TAO C, JIN L, JING H. Bifunctional chiral catalyst for the synthesis of chiral cyclic carbonates from carbon dioxide and epoxides[J]. ChemCatChem,2009,1:379−383.  doi: 10.1002/cctc.200900135

    92. [92]

      BHANAGE B M, FUJITA S I, IKUSHIMA Y, ARAI M. Synthesis of dimethyl carbonate and glycols from carbon dioxide, epoxides, and methanol using heterogeneous basic metal oxide catalysts with high activity and selectivity[J]. Appl Catal A: Gen,2001,219(1):259−266.

    93. [93]

      LU X B, XIU J H, HE R, JIN K, LUO L M, FENG X J. Chemical fixation of CO2 to ethylene carbonate under supercritical conditions: continuous and selective[J]. Appl Catal A: Gen,2005,275(1/2):73−78.

    94. [94]

      LI Zhen-rong. Carbonated soybean oil synthesis from epoxidised soybean oil and CO2 & aminolysis to non-isocyanate polyurethane[D]. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Science, 2009

    95. [95]

      LIANG H G, WANG J W, WANG F, FENG Y L, KANG M Q. An efficient heterogeneous LiBr/γ-Al2O3 catalyst for the cycloaddition of CO2 with diglycidyl ethers[J]. J Chem Technol Biot,2018,93:2271−2280.  doi: 10.1002/jctb.5570

    96. [96]

      LI Y, ZOU B, HU C W, CAO M H. Nitrogen-doped porous carbon nanofiber webs for efficient CO2 capture and conversion[J]. Carbon,2016,99:79−89.  doi: 10.1016/j.carbon.2015.11.074

    97. [97]

      LIANG H G, WANG J W, LI Q F, LIANG C, FENG Y L, KANG M Q. Supported ZnBr2 and carbon nitride bifunctional complex catalysts for the efficient cycloaddition of CO2 with diglycidyl ethers[J]. New J Chem,2018,42:16127−16137.  doi: 10.1039/C8NJ03499K

    98. [98]

      ZHANG Yuan-ping, LI Xiao-yun, DI Ya-li, ZHAO Yu-hua, KANG Mao-qing, LI Qi-feng, WANG Jun-wei. Study on the synthesis of melem catalyst and its application in synthesis of cyclic carbonate[J]. J Fuel Chem Technol,2021,49(3):379−386.

    99. [99]

      DURAIRAJ R B. Diol blends and methods for making and using the same: US 6303732[P]. 2001-10-16.

    100. [100]

      LI X Y, KE J X, WANG J W, KANG M Q, ZHAO Y H, LI Q F, LIANG C. CO2 derived amino-alcohol compounds for preparation of polyurethane adhesives[J]. J CO2 Util,2019,31:198−206.  doi: 10.1016/j.jcou.2019.03.007

    101. [101]

      LI X Y, WANG J W, KANG M Q, ZHAO Y H, LI Q F, LIANG C. Preparation of green waterborne polyurethane with improved hydrolysis repellency from CO2 derived amino-alcohol[J]. Eur Polym J,2020,127:109571.  doi: 10.1016/j.eurpolymj.2020.109571

    102. [102]

      SOGA K, CHIANG W Y, IKEDA S. Copolymerization of carbon dioxide with propyleneimine[J]. J Polym Sci Pol Chem,1974,12:121−131.  doi: 10.1002/pol.1974.170120111

    103. [103]

      ZHANG Ke. Study on synthesis of copolymers from cyclonitrous compounds and carbon dioxide and the temperature /pH dual sensitivity of them[D]. Zhengzhou: Zhengzhou University, 2009.

    104. [104]

      PENG Han, CHEN Li-ban, YANG Shu-ying, SU Yue. Terpolymerization of CO2, propylene oxide and toluene diisocyanate[J]. Chin J Appl Chem,1991,8(1):78−81.

  • 加载中
    1. [1]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    2. [2]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

    3. [3]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    4. [4]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    5. [5]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Changyan Sun Hualei Zhou Bin Dong . Application of “PBL” Teaching Mode in Inorganic Chemistry Experimental Education in the Perspective of Course Ideology and Politics: Taking Preparation of Manganese Carbonate as an Example. University Chemistry, 2024, 39(11): 378-383. doi: 10.12461/PKU.DXHX202402016

    7. [7]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    8. [8]

      Yu Peng Jiawei Chen Yue Yin Yongjie Cao Mochou Liao Congxiao Wang Xiaoli Dong Yongyao Xia . 无碳酸乙烯酯电解液定向构筑正极电解质界面相实现高电压钴酸锂的宽温域稳定运行. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-. doi: 10.1016/j.actphy.2025.100087

    9. [9]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    10. [10]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    11. [11]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    12. [12]

      Tao Wen Tao Zhang Changguo Sun Jinyu Liu . Preparation of Dess-Martin Reagent and Its Application in Oxidizing Cyclohexanol. University Chemistry, 2024, 39(5): 20-26. doi: 10.3866/PKU.DXHX202309055

    13. [13]

      Xu Liu Chengfang Liu Jie Huang Xiangchun Li Wenyong Lai . Research on the Application of Diversified Teaching Models in the Teaching of Physical Chemistry. University Chemistry, 2024, 39(8): 112-118. doi: 10.3866/PKU.DXHX202402021

    14. [14]

      Ruming Yuan Laiying Zhang Xiaoming Xu Pingping Wu Gang Fu . Application of Mathematica in Visualizing Physical Chemistry Formulas. University Chemistry, 2024, 39(8): 375-382. doi: 10.3866/PKU.DXHX202401030

    15. [15]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    16. [16]

      Yufan Pan Xue Ding Jiayu Lin Haiting Wu Hairong Huang Cuixue Chen Meiling Ye . Oil Cosmetics, Charming Chemistry: A Gradient Science Popularization Scheme for Cream Cosmetic Preparation. University Chemistry, 2025, 40(4): 382-389. doi: 10.12461/PKU.DXHX202406078

    17. [17]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    18. [18]

      Tingting Jiang Jing Chang . Application of Ideological and Political Education in Chemical Analysis Experiment under the Background of Emerging Engineering Education: Taking the Redox Titration Experiment as an Example. University Chemistry, 2024, 39(2): 168-174. doi: 10.3866/PKU.DXHX202308007

    19. [19]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    20. [20]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

Metrics
  • PDF Downloads(0)
  • Abstract views(177)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return