Citation: Li-ye ZHAO, Ru-shun AN, Xin SHI, Guo-bo CHEN, Liang WANG, Chun-hu LI. The effect of Bi content on the photocatalytic performance of bismuth oxybromides[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(2): 250-256. doi: 10.1016/S1872-5813(21)60144-5 shu

The effect of Bi content on the photocatalytic performance of bismuth oxybromides

Figures(11)

  • BiOBr, Bi3O4Br and Bi4O5Br2 were prepared by hydrothermal and solvothermal methods. Their structural composition, surface morphology, chemical states and optical properties were characterized by XRD, SEM, XPS and UV-vis. The band structure and density of states of the photocatalysts were calculated by density functional theory (DFT). The photocatalytic activity was evaluated by degradation of RhB. The results show that band gap and the position of conduction band is affected by Bi content. The Bi4O5Br2 photocatalyst can completely degrade RhB in 50 min. Radical-trapping experiments proves that ·\begin{document}$ {\rm{O}}_2^- $\end{document} is the main active species in photocatalytic degradation of RhB.
  • 加载中
    1. [1]

      VAYA D, SUROLIA P K. Semiconductor based photocatalytic degradation of pesticides: An overview[J]. Environ Technol Innovation,2020,20:101128.  doi: 10.1016/j.eti.2020.101128

    2. [2]

      IKREEDEEGH RR, TAHIR M. A critical review in recent developments of metal-organic-frameworks (MOFs) with band engineering alteration for photocatalytic CO2 reduction to solar fuels[J]. J CO2 Util,2021,43:101381.  doi: 10.1016/j.jcou.2020.101381

    3. [3]

      HU Qing-song. Construction of bismuth oxyhalide composite catalysts with enhanced photocatalytic activity for the removal of contaminants[D]. Shanghai: East China Normal University, 2020.

    4. [4]

      SUN J J, LI X Y, ZHAO Q D, LIU B J. Ultrathin nanoflake-assembled hierarchical BiOBr microflower with highly exposed {001} facets for efficient photocatalytic degradation of gaseous ortho-dichlorobenzene[J]. App Catal B: Environ,2021,281:119478.  doi: 10.1016/j.apcatb.2020.119478

    5. [5]

      MAO D J, DING S S, MENG L J, DAI Y X, SUN C, YANG S G, HE H. One-pot microemulsion-mediated synthesis of Bi-rich Bi4O5Br2 with controllable morphologies and excellent visible-light photocatalytic removal of pollutants[J]. App Catal B: Environ,2017,207:153−165.  doi: 10.1016/j.apcatb.2017.02.010

    6. [6]

      TIAN H D, CHENG R R, LIN M H, LI P, LV Y H, RAN S L. Oxygen-vacancy-rich ultrathin BiOBr nonosheets for high-performance supercapacitor electrodes[J]. Inorg Chem Commun,2020,118:108018.  doi: 10.1016/j.inoche.2020.108018

    7. [7]

      BAI Y, YANG P, WANG L, YANG B, XIE H Q, ZHOU Y, YE L Q. Ultrathin Bi4O5Br2 nanosheets for selective photocatalytic CO2 conversion into CO[J]. Chem Eng J,2019,360:473−482.  doi: 10.1016/j.cej.2018.12.008

    8. [8]

      Mao D J, Yuan J L, Qu X L, SUN C, YANG S G, HE H. Size tunable Bi3O4Br hierarchical hollow spheres assembled with {0 0 1}-facets exposed nanosheets for robust photocatalysis against phenolic pollutants[J]. J Catal,2019,369:209−221.  doi: 10.1016/j.jcat.2018.11.016

    9. [9]

      ZHANG H G, WANG W T, FENG LJ, LI C H WANG L. Effect of hydrothermal pH value on composition and morphology of bismuth oxybromide and their photocatalytic performance[J]. J Fuel Chem Technol,2019,47(5):582−589.  doi: 10.1016/S1872-5813(19)30026-X

    10. [10]

      ZHANG W B, XIAO X, WU Q F, FAN Q, ZAHNG F C. Facile synthesis of novel Mn-doped Bi4O5Br2 for enhanced photocatalytic NO removal activity[J]. J Alloys Compd,2020,826:154204.  doi: 10.1016/j.jallcom.2020.154204

    11. [11]

      ZHANG Y, YANG W. Comment on ''generalized gradient approximation made simple''[J]. Phys Rev Lett,1998,80(4):891−891.  doi: 10.1103/PhysRevLett.80.891

    12. [12]

      MONKHORST H J, PACK J D. Special points for brillonin-zone integrations[J]. Phys Rev B,1976,13(12):5188−5192.  doi: 10.1103/PhysRevB.13.5188

    13. [13]

      LI K L, LEE WW, LU CS, DAI Y M, CHOU S Y, CHEN S L, LIN H P, CHEN C C. Synthesis of BiOBr, Bi3O4Br, and Bi12O17Br2 by controlled hydrothermal method and their photocatalytic properties[J]. J Taiwan Inst Chem Eng,2014,45(5):2688−2697.  doi: 10.1016/j.jtice.2014.04.001

    14. [14]

      JIN X L, LV C, ZHOU X, XIE H Q, SUN S F, LIU Y, MENG Q Q, CHEN G. A bismuth rich hollow Bi4O5Br2 photocatalyst enables dramatic CO2 reduction activity[J]. Nano Energy,2019,64:103955.  doi: 10.1016/j.nanoen.2019.103955

    15. [15]

      WANG X K, LIU Y X, WANG J N, ZHANG J M, HUANG Y H, WEI X M. Theoretical investigation of the photocatalytic mechanism of single Au adsorption on the Bi4O5Br2 (101) surface[J]. Chem Phys Lett,2020,757(6):137851.

    16. [16]

      GUO N N, CAO Y L, RONG Y L, JIA D Z. Green synthesis of BiOBr modified Bi2O2CO3 nanocomposites with enhanced visible-responsive photocatalytic properties[J]. RSC Adv,2016,6(108):106046.  doi: 10.1039/C6RA22385K

    17. [17]

      YANG P, WANG J C, YUE G Z, YANG R Z, ZHAO P X, YANG L J, ZHANG X C, ASTRUC D. Constructing mesoporous g-C3N4/ZnO nanosheets catalyst for enhanced visible-light driven photocatalytic activity[J]. J Photoch Photobio A,2020,388:112169.  doi: 10.1016/j.jphotochem.2019.112169

    18. [18]

      LI R, XIE F X, LIU J X, WANG Y W, WANG Y F, ZHANG X C, FAN C M. Synthesis of Bi4O5Br2 from reorganization of BiOBr and its excellent visible light photocatalytic activity[J]. Dalton Trans,2016,45:9182−9186.  doi: 10.1039/C6DT00997B

    19. [19]

      KANAGARAI T, THIRIPURANTHAGAN S. Photocatalytic activities of novel SrTiO3-BiOBr heterojunction catalysts towards the degradation of reactive dyes[J]. App Catal B: Environ,2017,207:218−232.  doi: 10.1016/j.apcatb.2017.01.084

    20. [20]

      AO Y H, WANG K D, WANG P F, WANG C, HOU J. Synthesis of novel 2D-2D p-n heterojunction BiOBr/La2Ti2O7 composite photocatalyst with enhanced photocatalytic performance under both UV and visible light irradiation[J]. App Catal B: Environ,2016,194:157−168.  doi: 10.1016/j.apcatb.2016.04.050

  • 加载中
    1. [1]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    2. [2]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    3. [3]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    4. [4]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    5. [5]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    6. [6]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    7. [7]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    8. [8]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    11. [11]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    12. [12]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    13. [13]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    14. [14]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    15. [15]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    16. [16]

      Mingjie Lei Wenting Hu Kexin Lin Xiujuan Sun Haoshen Zhang Ye Qian Tongyue Kang Xiulin Wu Hailong Liao Yuan Pan Yuwei Zhang Diye Wei Ping Gao . Co/Mn/Mo掺杂加速NiSe2重构以提高其电催化尿素氧化性能. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-. doi: 10.1016/j.actphy.2025.100083

    17. [17]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    18. [18]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    19. [19]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    20. [20]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

Metrics
  • PDF Downloads(0)
  • Abstract views(345)
  • HTML views(91)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return