Citation: Xin NING, Ming-jie LIAO, Yan-chao LIU, Jia-jun ZHENG, Wen-lin LI, Rui-feng LI. Investigation of the interactions for the 1-hexene oligomerization and the catalytic cracking reactions[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(2): 237-242. doi: 10.1016/S1872-5813(21)60143-3 shu

Investigation of the interactions for the 1-hexene oligomerization and the catalytic cracking reactions

  • Corresponding author: Wen-lin LI, liwenlin@tyut.edu.cn
  • Received Date: 7 May 2021
    Revised Date: 26 July 2021

Figures(8)

  • Using 1,3,5-triisopropylbenzene (1,3,5-TIPB) and n-octane as the catalytic cracking feedstocks and 1-hexene as the oligomerization feedstock, the coupling mechanism of catalytic cracking reaction and olefin oligomerization reaction over the synthesized hierarchical ZSM-5 zeolite catalyst was evaluated. The results of catalytic cracking reaction of model compounds showed that the catalytic cracking performance of molecules with different sizes was inhibited on the synthesized hierarchical ZSM-5 zeolite. The cracking activity of 1,3,5-TIPB decreased, and the initial activity of n-octane reduced from 70% to 20%. However, enhanced 1-hexene oligomerization activity was observed over the hierarchical ZSM-5 zeolite, with dimer as the main product. The reduction of the strong acid sites in the zeolite can inhibit the catalytic cracking reaction and promote the oligomerization of C6 olefin into dimer and trimer (ideal components of jet fuel). Therefore, the designing of the catalyst from the perspective of inhibiting the activity of catalytic cracking can effectively improve the oligomerization performance of the catalyst.
  • 加载中
    1. [1]

      KRIVáN E, VALKAI I, HANCSÓK J. Investigation of production of motor fuel components on heterogeneous catalyst with oligomerization[J]. Top Catal,2013,56(9/10):831−838.  doi: 10.1007/s11244-013-0041-2

    2. [2]

      BELLUSSI G, MIZIA F, CALEMMA V, POLLESEL P, MILLINI R. Oligomerization of olefins from light cracking naphtha over zeolite-based catalyst for the production of high quality diesel fuel[J]. Microporous Mesoporous Mater,2012,164:127−134.  doi: 10.1016/j.micromeso.2012.07.020

    3. [3]

      DE KLERK A. Distillate production by oligomerization of fischer-tropsch olefins over solid phosphoric acid[J]. Energy Fuels,2006,20(2):439−445.  doi: 10.1021/ef0503459

    4. [4]

      IPATIEFF V N, PINES H. Propylene polymerization: Under high pressure and temperature with and without phosphoric acid[J]. Ind Eng Chem Res,1936,28(6):684−686.  doi: 10.1021/ie50318a018

    5. [5]

      NICHOLAS C P. Applications of light olefin oligomerization to the production of fuels and chemicals[J]. Appl Catal A: Gen,2017,543:82−97.  doi: 10.1016/j.apcata.2017.06.011

    6. [6]

      MONAMA W, MOHIUDDIN E, THANGARAJ B, MDLELENI M M, KEY D. Oligomerization of lower olefins to fuel range hydrocarbons over texturally enhanced ZSM-5 catalyst[J]. Catal Today,2020,342:167−177.  doi: 10.1016/j.cattod.2019.02.061

    7. [7]

      RODRÍGUEZ R, ESPADA J J, COTO B. Structural characterization of fuels obtained by olefin oligomerization[J]. Energy Fuels,2010,24(1):464−468.  doi: 10.1021/ef900802y

    8. [8]

      ZI Zhong-yue, LI Jian-qing, LIU Guang-bo, WU Jin-hu. Study on performance of Ni-HZSM-5 molecular sieve in catalyzing oligomerization of different olefins feedstocks[J]. Mod Chem Ind,2020,40(9):66−69.

    9. [9]

      YIN A, WEN C, GUO X, DAI W-L, FAN K. Influence of Ni species on the structural evolution of Cu/SiO2 catalyst for the chemoselective hydrogenation of dimethyl oxalate[J]. J Catal,2011,280(1):77−88.  doi: 10.1016/j.jcat.2011.03.006

    10. [10]

      DE KLERK A, LECKEL D O, PRINSLOO N M. Butene oligomerization by phosphoric acid catalysis: Separating the effects of temperature and catalyst hydration on product selectivity[J]. Ind Eng Chem Res,2006,45(18):6127−6136.  doi: 10.1021/ie060207m

    11. [11]

      MARTíNEZ A, ARRIBAS M A, CONCEPCIÓN P, MOUSSA S. New bifunctional Ni-H-Beta catalysts for the heterogeneous oligomerization of ethylene[J]. Appl Catal A: Gen,2013,467:509−518.  doi: 10.1016/j.apcata.2013.08.021

    12. [12]

      KULKARNI A, KUMAR A, GOLDMAN A S, CELIK F E. Selectivity for dimers in pentene oligomerization over acid zeolites[J]. Catal Commun,2016,75:98−102.  doi: 10.1016/j.catcom.2015.11.012

    13. [13]

      ZHANG Su-hong, ZHANG Bian-ling, GAO Zhi-xia, HAN Yi-zhuo. Effect of zeolite crystal size on the catalytic performance of HZSM-5 in the reaction of methanol to light olefins[J]. J Fuel Chem Technol,2010,38(4):483−489.  doi: 10.3969/j.issn.0253-2409.2010.04.018

    14. [14]

      KWON M H, YOON J S, LEE M, HWANG D W, KIM Y, PARK M B, CHAE H J. One-pot cascade ethylene oligomerization using Ni/Siral-30 and H-ZSM-5 catalysts[J]. Appl Catal A: Gen,2019,572:226−231.  doi: 10.1016/j.apcata.2018.12.005

    15. [15]

      DíAZ M, EPELDE E, TABERNILLA Z, ATEKA A, AGUAYO A T, BILBAO J. Operating conditions to maximize clean liquid fuels yield by oligomerization of 1-butene on HZSM-5 zeolite catalysts[J]. Energy,2020,207:118317.  doi: 10.1016/j.energy.2020.118317

    16. [16]

      MURAZA O. Maximizing diesel production through oligomerization: A landmark opportunity for zeolite research[J]. Ind Eng Chem Res,2015,54(3):781−789.  doi: 10.1021/ie5041226

    17. [17]

      MARTINEZ C, DOSKOCIL E J, CORMA A. Improved THETA-1 for light olefins oligomerization to diesel: Influence of textural and acidic properties[J]. Top Catal,2014,57(6/9):668−682.  doi: 10.1007/s11244-013-0224-x

    18. [18]

      LI Chao, WANG Hui, ZHU Shan-shan, LIU Guang-bo, WU Jin-hu. Research on butene oligomerization reaction over the hemicellulose modified HZSM-5[J]. J Fuel Chem Technol,2017,45(9):1088−1094.  doi: 10.3969/j.issn.0253-2409.2017.09.009

    19. [19]

      ZI Zhong-yue, LI Bing-shuang, GE Yuan-zheng, LIU Guang-bo, LI Jian-qing, WU Jin-hu. Research on propene oligomerization reaction over the Fenton's reagent modified ZSM-5[J]. J Fuel Chem Technol,2020,48(8):986−992.  doi: 10.3969/j.issn.0253-2409.2020.08.011

    20. [20]

      KWON M-H, CHAE H-J, PARK M B. Oligomerization of 1-hexene over designed SBA-15 acid catalysts[J]. J Ind Eng Chem,2018,65:397−405.  doi: 10.1016/j.jiec.2018.05.012

    21. [21]

      NI Y, SUN A, WU X, HAI G, HU J, LI T, LI G. The preparation of nano-sized H[Zn, Al]ZSM-5 zeolite and its application in the aromatization of methanol[J]. Microporous Mesoporous Mater,2011,143(2/3):435−442.  doi: 10.1016/j.micromeso.2011.03.029

    22. [22]

      JUNG J S, KIM T J, SEO G. Catalytic cracking of n-octane over zeolites with different pore structures and acidities[J]. Korean J Chem Eng,2004,21(4):777−781.  doi: 10.1007/BF02705520

    23. [23]

      CORMA A, ORCHILLÉSB A V. Current views on the mechanism of catalytic cracking[J]. Microporous Mesoporous Mater,2000,35−36:21−30.  doi: 10.1016/S1387-1811(99)00205-X

    24. [24]

      DE KLERK A. Oligomerization of 1-hexene and 1-octene over solid acid catalysts[J]. Ind Eng Chem Res,2005,44(11):3887−3893.  doi: 10.1021/ie0487843

    25. [25]

      DÍAZ-REY M R, PARIS C, MARTÍNEZ-FRANCO R, MOLINER M, MARTÍNEZ C, CORMA A. Efficient oligomerization of pentene into liquid fuels on nanocrystalline beta zeolites[J]. ACS Catal,2017,7(9):6170−6178.  doi: 10.1021/acscatal.7b00817

  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    3. [3]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    4. [4]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    5. [5]

      Yiming Lu Xiang Xie Xiaoqing Qiu Yang Liu Xinyuan Cheng . The New Year’s Eve of the Aviation Brake Material Family. University Chemistry, 2024, 39(9): 203-207. doi: 10.12461/PKU.DXHX202403061

    6. [6]

      Xianyong Lu Tao Hu . Developing an Innovative Inorganic Chemistry Teaching Model Based on Aerospace Specialty Characteristics. University Chemistry, 2025, 40(7): 127-131. doi: 10.12461/PKU.DXHX202409037

    7. [7]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    8. [8]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    9. [9]

      Zhenxing Liu Jiaen Hu Zishi Cheng Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107

    10. [10]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    11. [11]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    12. [12]

      Xunzhang Fan Yuanjin Zhao Shufang Luo Aihua He . Karl Ziegler: A Pioneer in the Polyolefin Industry – Commemorating the 50th Anniversary of the German Chemist’s Passing. University Chemistry, 2024, 39(8): 389-394. doi: 10.3866/PKU.DXHX202312065

    13. [13]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    14. [14]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    15. [15]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    16. [16]

      Jiamin Li Wenyue Zhong Kin Shing Chan . “烯”君入瓮又入学——据元素周期表与酸碱理论谈烯烃教学. University Chemistry, 2025, 40(6): 177-182. doi: 10.12461/PKU.DXHX202408040

    17. [17]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    18. [18]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    19. [19]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    20. [20]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

Metrics
  • PDF Downloads(0)
  • Abstract views(214)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return