Citation: Xiao-fei HE, Jing GUO, Hong-qiang XIA, Tian-sheng ZHAO. Study on regioselectivity in cobalt catalyzed hydroformylation of α-hexene[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(1): 72-79. doi: 10.1016/S1872-5813(21)60131-7 shu

Study on regioselectivity in cobalt catalyzed hydroformylation of α-hexene

  • Corresponding author: Tian-sheng ZHAO, zhaots@nxu.edu.cn
  • Received Date: 7 May 2021
    Revised Date: 20 June 2021

Figures(8)

  • Regioselective effects of electron and steric hindrance of catalytically active intermediate HCo(CO)2L coordinated by phosphine ligands on α-hexene hydroformylation were studied based on density functional theory. Phosphine ligands have strong electron-attracting capacity that raises the stability of HCo(CO)2L. PPh3 with large steric hindrance suppresses the coordination of α-hexene with HCo(CO)2L as well as the secondary reaction of the C=C with the Co–H via the branched chain pathway. The energy barrier for the transition state containing linear chain alkyl Co intermediate is lower about 2.73 kcal/mol than that for the transition state with branched chain alkyl Co intermediate, indicating that linear chain pathway is dominant in the addition reaction. Both the electron and steric hindrance effects of phosphine ligands determines the pathway of addition reaction between the C=C of α-hexene and the Co–H. The linear chain addition is preferable that mainly produces linear chain aldehydes.
  • 加载中
    1. [1]

      FRANKE R, SELENT D, BÖRNER A. Applied hydroformylation[J]. Chem Rev,2012,112(11):5675−5732.  doi: 10.1021/cr3001803

    2. [2]

      ROELEN O. Production of oxygenated carbon compounds. US, 2327066[P]. 1943.

    3. [3]

      HEBRARD F, KALCK P. Cobalt-catalyzed hydroformylation of alkenes: Generation and recycling of the carbonyl species, and catalytic cycle[J]. Chem Rev,2009,109(9):4272−4282.  doi: 10.1021/cr8002533

    4. [4]

      SZLAPA E N, HARVEY J N. Computational modelling of selectivity in cobalt-catalyzed propene hydroformylation[J]. Chem Eur J,2018,24(64):17096−17104.  doi: 10.1002/chem.201803490

    5. [5]

      LIU Y, LI Z H, WANG B, ZHANG Y. A fine dispersed cobalt catalyst with macro-pore for hydroformylation of 1-hexene[J]. Catal Lett,2016,11(146):2252−2260.

    6. [6]

      HOOD D M, JOHNSON R A, CARPENTER A E, YOUNKER J M, VINYARD D J, STANLEY G G. Highly active cationic cobalt(II) hydroformylation catalysts[J]. Science,2020,367(6477):542−548.  doi: 10.1126/science.aaw7742

    7. [7]

      HECK R F, BRESLOE D S. The reaction of cobalt hydrotetracarbonyl with olefins[J]. J Am Chem Soc,1961,83:4023−4027.  doi: 10.1021/ja01480a017

    8. [8]

      LI P, SHEN C R, MIN J, MEI J Y, ZHENG H, HE L TIAN X X. Computational investigation of the ligand effect on the chemo/regioselectivity and reactivity of cobalt-catalysed hydroformylation[J]. Catal Sci Technol,2020,10(9):2994−3007.  doi: 10.1039/C9CY02562F

    9. [9]

      VARELA J A, VÁZQUEZ S A, MARTÍNEZ-NÚÑEZ E. An automated method to find reaction mechanisms and solve the kinetics in organometallic catalysis[J]. Chem Sci,2017,8(5):3843−3851.

    10. [10]

      RUSH L E, PRINGLE P G, HARVEY J N. Computational kinetics of cobalt-catalyzed alkene hydroformylation[J]. Angew Chem Int Ed,2014,53(33):8672−8676.  doi: 10.1002/anie.201402115

    11. [11]

      FENG J H, GARLAND M. Unmodified homogeneous rhodium-catalyzed hydroformylation of styrene. The detailed kinetics of the regioselective synthesis[J]. Organometallics,1999,18(3):417−427.  doi: 10.1021/om980514v

    12. [12]

      LEI Ming, FENG Wen-lin, XU Zhen-feng. Theoretical study on the mechanisms of some elementary reactions catalyzed by modified carbonyl cobalt[J]. Acta Phys-Chim Sin,2000,16(6):522−526.  doi: 10.3866/PKU.WHXB20000609

    13. [13]

      HUO C F, LI Y W, BELLER M, JIAO H J. HCo(CO)3-catalyzed propene hydroformylation. Insight into detailed mechanism[J]. Organometallics,2003,22(23):4665−4677.  doi: 10.1021/om0304863

    14. [14]

      BERNALES V, FROESE R D. Rhodium catalyzed hydroformylation of olefins[J]. J Comput Chem,2019,40(2):342−348.  doi: 10.1002/jcc.25605

    15. [15]

      LEI M, FENG W L, XU Z F. Ab initio MO study of reactions mechanism for carbonyl migration of Co complex[J]. Chin Sci Bull,2000,45(13):1176−1178.  doi: 10.1007/BF02886073

    16. [16]

      KUMAR M, CHAUDHARI R V, SUBRAMANIAM B, JACKSON T A. Ligand effects on the regioselectivity of rhodium-catalyzed hydroformylation: Density functional calculations illuminate the role of long-range noncovalent interactions[J]. Organometallics,2014,33(16):4183−4191.  doi: 10.1021/om500196g

    17. [17]

      PATEL P, WILSON A K. Computational chemistry considerations in catalysis: Regioselectivity and metal-ligand dissociation[J]. Catal Today,2020,358:422−429.  doi: 10.1016/j.cattod.2020.07.057

    18. [18]

      DIAS R P, PRATES M S L, DE ALMEIDA W B, ROCHA W R. DFT study of the ligand effects on the regioselectivity of the insertion reaction of olefins in the complexes [HRh(CO)2(PR3)(L)] (R = H, F, Et, Ph, OEt, OPh, and L = propene, styrene)[J]. Int J Quantum Chem,2011,111(7/8):1280−1292.  doi: 10.1002/qua.22590

    19. [19]

      BECKE A D. Density ‐ functional thermochemistry. III. The role of exact exchange[J]. J Chern Phys,1993,98(7):5648−5652.  doi: 10.1063/1.464913

    20. [20]

      GRIMME S, EHRLICH S, GOERIGK L. Effect of the damping function in dispersion corrected density functional theory[J]. J Comput Chem,2011,32(7):1456−1465.  doi: 10.1002/jcc.21759

    21. [21]

      FRISCH M J, TRUCKS G W, SCHLEGEL H B, SCUSERIA G E. Gaussian16 Rev. B. 01[M] Wallingford, CT, 2016.

    22. [22]

      AULLóN G, ALVAREZ S. The [M2(CO)8] complexes of the cobalt group[J]. Eur J Inorg Chem,2001,12:3031−3038.

    23. [23]

      GUO J D, PHAM H D, WU Y B, ZHANG D J, WANG X T. Mechanism of cobalt-catalyzed direct aminocarbonylation of unactivated alkyl electrophiles: Outer-sphere amine substitution to form amide bond[J]. ACS Catal,2020,10(2):1520−1527.  doi: 10.1021/acscatal.9b04736

    24. [24]

      JIANG Miao, DU Hong, WANG Guo-qing, YAN Li, DING Yun-jie. Co-PPh3@POPs heterogeneous catalysts for hydroformylation of olefins[J]. J China Coal Soc,2020,45(4):1250−1258.

    25. [25]

      GRIMA J P, CHOPLIN F, KAUFMANN G. Theoretical study of the hydroformyltaion reaction mechanism[J]. J Organomet Chem,1977,129:221−237.  doi: 10.1016/S0022-328X(00)92495-1

    26. [26]

      BIRBECK J M, HAYNES A, ADAMS H, DAMOERNSE L, OTTO S. Ligand effects on reactivity of cobalt acyl complexes[J]. ACS Catal,2012,2(12):2512−2523.  doi: 10.1021/cs300589n

    27. [27]

      HUO C F, ZENG T, LI Y W, BELLER M, JIAO H J. Switching end-on into side-on C≡N coordination: A computational approach[J]. Organometallics,2005,24(24):6037−6042.  doi: 10.1021/om0505054

    28. [28]

      FALIVENE L, CREDENDINO R, POATER A, PETTA A, SERRA L, OLIVA R, SCARANO V, CAVALLO L. SambVca 2. A web tool for analyzing catalytic pockets with topographic steric maps[J]. Organometallics,2016,35(13):2286−2293.  doi: 10.1021/acs.organomet.6b00371

  • 加载中
    1. [1]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    2. [2]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    3. [3]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

    4. [4]

      Chunyan YangQiuyu RongFengyin ShiMenghan CaoGuie LiYanjun XinWen ZhangGuangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767

    5. [5]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    6. [6]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    7. [7]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    8. [8]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    9. [9]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    10. [10]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    11. [11]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    12. [12]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

    13. [13]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    14. [14]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    15. [15]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    16. [16]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    17. [17]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    18. [18]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    19. [19]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    20. [20]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

Metrics
  • PDF Downloads(0)
  • Abstract views(647)
  • HTML views(154)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return