Citation: Dao-cheng LIU, Jie-ying JING, Jiu-zhan WANG, Jie FENG, Wen-ying LI. Performance of Pt-doped Ni/NiAlOx catalysts for phenanthrene hydrogenation saturation[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(1): 90-97. doi: 10.1016/S1872-5813(21)60128-7 shu

Performance of Pt-doped Ni/NiAlOx catalysts for phenanthrene hydrogenation saturation

Figures(8)

  • Limited by the steric hindrance, hydrogenation of the final unsaturated ring in polycyclic aromatic hydrocarbons remains a challenge. In this work, a series of Pt-Ni/NiAlOx catalysts were synthesized by impregnation method to enhance the adsorption of aromatics, and phenanthrene was served as the model compound. The effects of Pt content on the structure and saturation performance of Pt-Ni/NiAlOx catalysts were systematically investigated. When the saturation reaction was performed at 300 ℃, 5 MPa and a weight hourly space velocity of 52 h−1, the selectivity of perhydrophenanthrene could be enhanced from 40% over Ni/NiAlOx catalysts to 67% over 0.5Pt-Ni/NiAlOx catalysts with 0.5% Pt loading. Meanwhile, the obvious reaction rate and turnover frequency were also improved from 1.53×10−3 mol·kg−1·s−1 and 14.64×10−3 s−1 to 1.81×10−3 mol·kg−1·s−1 and 22.16×10−3 s−1 respectively. This is related to the modified stability of metallic electron-deficient structure of Ni by Pt introduction in phenanthrene hydrogenation, which can promote the adsorption of aromatic hydrocarbons as well as the hydrogenation activity.
  • 加载中
    1. [1]

      JING J Y, WANG J Z, LIU D C, QIE Z Q, BAI H C, LI W Y. Naphthalene hydrogenation saturation over Ni2P/Al2O3 catalysts synthesized by thermal decomposition of hypophosphite[J]. ACS Omega,2020,5(48):31423−31431.  doi: 10.1021/acsomega.0c05019

    2. [2]

      YOON E M, SELVARAJ L, SONG C, STALLMAN J B, COLEMAN M M. High-temperature stabilizers for jet fuels and similar hydrocarbon mixtures. 1. Comparative studies of hydrogen donors[J]. Energy Fuels,1996,10(3):806−811.  doi: 10.1021/ef950228l

    3. [3]

      ZHANG X W, PAN L, WANG L, ZOU J J. Review on synthesis and properties of high-energy-density liquid fuels: Hydrocarbons, nanofluids and energetic ionic liquids[J]. Chem Eng Sci,2018,180:95−125.  doi: 10.1016/j.ces.2017.11.044

    4. [4]

      JIA T H, ZHANG X W, LIU Y, GONG S, DENG C, PAN L, ZOU J J. A comprehensive review of the thermal oxidation stability of jet fuels[J]. Chem Eng Sci,2021,229:116157.  doi: 10.1016/j.ces.2020.116157

    5. [5]

      LI C S, SUZUKI K. Resources, properties and utilization of tar[J]. Resour Conserv Recycl,2010,54(11):905−915.  doi: 10.1016/j.resconrec.2010.01.009

    6. [6]

      HAYAKAWA K, MURAHASHI T, AKUTSU K, KANDA T, TANG N, KAKIMOTO H, TORIBA A, KIZU R. Comparison of polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in airborne and automobile exhaust particulates[J]. Polycycl Aromat Compd,2000,20(1/4):179−190.  doi: 10.1080/10406630008034784

    7. [7]

      HAYAKAWA K, MURAHASHI T, AKUTSU K, KANDA T, TANG N, KAKIMOTO H, TORIBA A, KIZU R. Simultaneous hydrogenation of multiring aromatic compounds over NiMo catalyst[J]. Ind Eng Chem Res,2008,47(19):7161−7166.  doi: 10.1021/ie8004258

    8. [8]

      QIAN W H, YODA Y, HIRAI Y, ISHIHARA A, KABE T. Hydrodesulfurization of dibenzothiophene and hydrogenation of phenanthrene on alumina-supported Pt and Pd catalysts[J]. Appl Catal A: Gen,1999,184(1):81−88.  doi: 10.1016/S0926-860X(99)00083-6

    9. [9]

      FU W Q, ZHANG L, WU D F, XIANG M, ZHUO Q, HUANG K, TAO Z D, TANG T D. Mesoporous zeolite-supported metal sulfide catalysts with high activities in the deep hydrogenation of phenanthrene[J]. J Catal,2015,330:423−433.  doi: 10.1016/j.jcat.2015.07.026

    10. [10]

      WANG D G, LI J H, ZHENG A D, MA H J, PAN Z D, QU W, WANG L, HAN J Q, WANG C X, TIAN Z J. Quasi-single-layer MoS2 on MoS2/TiO2 nanoparticles for anthracene hydrogenation[J]. ACS Appl Nano Mater,2019,2(8):5096−5107.  doi: 10.1021/acsanm.9b01001

    11. [11]

      WANG D G, LI J H, ZHENG A D, MA H J, PAN Z D, QU W, WANG L, HAN J Q, WANG C X, TIAN Z J. Designing MoS2 nanocatalysts with increased exposure of active edge sites for anthracene hydrogenation reaction[J]. Catal Sci Technol,2017,7:2998−3007.  doi: 10.1039/C7CY01026E

    12. [12]

      LUO W Q, SHI H, SCHACHTL E, GUTIéRREZ O T, LERCHER J A. Active sites on nickel-promoted transition-metal sulfides that catalyze hydrogenation of aromatic compounds[J]. Angew Chem-Int Ed,2018,57:14555−14559.  doi: 10.1002/anie.201808428

    13. [13]

      GHADAMI YAZDI M, MOUD P H, MARKS K, PISKORZ W, ÖSTRÖM H, HANSSON T, KOTARBA A, ENGVALL K, GÖTHELID M. Naphthalene on Ni(111): Experimental and theoretical insights into adsorption, dehydrogenation, and carbon passivation[J]. J Mater Chem C,2017,121(40):22199−22207.

    14. [14]

      LIU Dao-cheng, WANG Jiu-zhan, JING Jie-ying, YANG Zhi-feng, FENG Jie, LI Wen-ying. Research progress on the catalysts for saturated hydrogenation of polycyclic aromatic hydrocarbons[J]. Chem Ind Eng Prog,2021,40(2):835−844.

    15. [15]

      LIU D C, JING J Y, WANG J Z, FENG J, LI W Y. Phenanthrene hydrogenation saturation over Ni/NiAl2O4 catalyst prepared by modified sol-gel method[C]. 37th Annual International Pittsburgh Coal Conference, 2020.

    16. [16]

      KITCHIN J R, NØRSKOV J K, BARTEAU M A, CHEN J G. Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces[J]. Phys Rev Lett,2004,93(15):156801.  doi: 10.1103/PhysRevLett.93.156801

    17. [17]

      MAVRIKAKIS M, HAMMER B, NøRSKOV J K. Effect of strain on the reactivity of metal surfaces[J]. Phys Rev Lett,1998,81(13):2819−2822.  doi: 10.1103/PhysRevLett.81.2819

    18. [18]

      BERTOLINI J-C. Surface stress and chemical reactivity of Pt and Pd overlayers[J]. Appl Catal A: Gen,2000,191(1):15−21.

    19. [19]

      MORALES-MARíN A, AYASTUY J L, IRIARTE-VELASCO U, GUTIéRREZ-ORTIZ M A. Nickel aluminate spinel-derived catalysts for the aqueous phase reforming of glycerol: Effect of reduction temperature[J]. Appl Catal B: Environ,2019,244:931−945.  doi: 10.1016/j.apcatb.2018.12.020

    20. [20]

      RAAB C, LERCHER J A, GOODWIN J G, SHYU J Z. Preparation and characterization of silica-supported Ni/Pt catalysts[J]. J Catal,1990,122(2):406−414.  doi: 10.1016/0021-9517(90)90294-T

    21. [21]

      FANG Jie, LI Na, CHENG Lang, LU Jiang-yin. Effect of Ni-Cu on the one-step mild pressure hydrogenation of 1,4-butynediol[J]. J Fuel Chem Technol,2019,47(6):725−736.  doi: 10.3969/j.issn.0253-2409.2019.06.010

    22. [22]

      VAN DEELEN T W, HERNÁNDEZ MEJÍA C, DE JONG K P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity[J]. Nat Catal,2019,2(11):955−970.  doi: 10.1038/s41929-019-0364-x

    23. [23]

      LEE Y-K, OYAMA S T. Bifunctional nature of a SiO2-supported Ni2P catalyst for hydrotreating: EXAFS and FTIR studies[J]. J Catal,2006,239(2):376−389.  doi: 10.1016/j.jcat.2005.12.029

    24. [24]

      SRIFA A, KAEWMEESRI R, FANG C, ITTHIBENCHAPONG V, FAUNGNAWAKIJ K. NiAl2O4 spinel-type catalysts for deoxygenation of palm oil to green diesel[J]. Chem Eng J,2018,345:107−113.  doi: 10.1016/j.cej.2018.03.118

    25. [25]

      TUO Y X, MENG Y, CHEN C, LIN D, FENG X, PAN Y, LI P, CHEN D, LIU Z N, ZHOU Y, ZHANG J. Partial positively charged Pt in Pt/MgAl2O4 for enhanced dehydrogenation activity[J]. Appl Catal B: Environ,2021,288:119996.  doi: 10.1016/j.apcatb.2021.119996

    26. [26]

      FU W Q, ZHANG L, WU D F, YU Q Y, TANG T, TANG T D. Mesoporous zeolite ZSM-5 supported Ni2P catalysts with high activity in the hydrogenation of phenanthrene and 4, 6-dimethyldibenzothiophene[J]. Ind Eng Chem Res,2016,55(26):7085−7095.  doi: 10.1021/acs.iecr.6b01583

  • 加载中
    1. [1]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    2. [2]

      Tianyao HeGan LiXiaoqiang XieDong HanYunyue LengQiuli ZhangWenming LiuGuobo LiHongxiang ZhangShan HuangTing HuangHonggen Peng . Design of highly active meso-zeolite enveloping Pt–Ni bimetallic catalysts for degradation of toluene. Chinese Chemical Letters, 2025, 36(4): 110137-. doi: 10.1016/j.cclet.2024.110137

    3. [3]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    4. [4]

      Naihong Wang Longkang Zhang Yejun Guan Peng Wu Hao Xu . Pt confined in Sn-ECNU-46 zeolite for efficient alkane dehydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100248-100248. doi: 10.1016/j.cjsc.2024.100248

    5. [5]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    6. [6]

      Huijie AnChen YangZhihui JiangJunjie YuanZhongming QiuLonghao ChenXin ChenMutu HuangLinlang HuangHongju LinBiao ChengHongjiang LiuZhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134

    7. [7]

      Jialin CaiYizhe ChenRuiwen ZhangCheng YuanZeyu JinYongting ChenShiming ZhangJiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255

    8. [8]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    9. [9]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Weiping XiaoYuhang ChenQin ZhaoDanil BukhvalovCaiqin WangXiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176

    12. [12]

      Chenhao ZhangQian ZhangYezhou HuHanyu HuJunhao YangChang YangYe ZhuZhengkai TuDeli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429

    13. [13]

      Hongliang ZengYuan JiJinfeng WenXu LiTingting ZhengQiu JiangChuan Xia . Pt nanocluster-catalyzed hydrogen evolution reaction: Recent advances and future outlook. Chinese Chemical Letters, 2025, 36(3): 109686-. doi: 10.1016/j.cclet.2024.109686

    14. [14]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    15. [15]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    16. [16]

      Linjie JuZhongxi HuangQian ShenChan FuShuanghe LiWenjie DuanChenfeng XuWeizhen AnZhiqiang ZhaiJifu WeiChangmin YuGuoren Zhou . Glutathione depletion based Pt(Ⅳ) hybrid mesoporous organosilica delivery system to conquer cisplatin chemoresistance: A “one stone three birds” strategy. Chinese Chemical Letters, 2024, 35(10): 109450-. doi: 10.1016/j.cclet.2023.109450

    17. [17]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    18. [18]

      Peng ZhangYitao YangTian QinXueqiu WuYuechang WeiJing XiongXi LiuYu WangZhen ZhaoJinqing JiaoLiwei Chen . Interface engineering of Pt/CeO2-{100} catalysts for enhancing catalytic activity in auto-exhaust carbon particles oxidation. Chinese Chemical Letters, 2025, 36(2): 110396-. doi: 10.1016/j.cclet.2024.110396

    19. [19]

      Zhuo LiPeng YuDi ShenXinxin ZhangZhijian LiangBaoluo WangLei Wang . Low-loading Pt anchored on molybdenum carbide-based polyhedral carbon skeleton for enhancing pH-universal hydrogen production. Chinese Chemical Letters, 2025, 36(4): 109713-. doi: 10.1016/j.cclet.2024.109713

    20. [20]

      Huakang ZongXinyue LiYanlin ZhangFaxun WangXingxing YuGuotao DuanYuanyuan Luo . Pt/Ti3C2 electrode material used for H2S sensor with low detection limit and high stability. Chinese Chemical Letters, 2025, 36(5): 110195-. doi: 10.1016/j.cclet.2024.110195

Metrics
  • PDF Downloads(0)
  • Abstract views(1291)
  • HTML views(326)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return