Citation: Pan XIONG, Xiu-juan GAO, Wen-xiu WANG, Jun-feng ZHANG, Fa-en SONG, Qing-de ZHANG, Yi-zhuo HAN, Yi-sheng TAN. Effect of calcination temperature on the structure and performance of molybdenum-tin catalyst for DME oxidation[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(1): 63-71. doi: 10.1016/S1872-5813(21)60120-2 shu

Effect of calcination temperature on the structure and performance of molybdenum-tin catalyst for DME oxidation

  • Corresponding author: Qing-de ZHANG, qdzhang@sxicc.ac.cn
  • Received Date: 26 April 2021
    Revised Date: 23 May 2021

Figures(10)

  • The Mo1Sn2 catalysts with a Mo/Sn molar ratio of 1∶2 were prepared by the hydrothermal method, and their structure was regulated by changing the calcination temperature (400–700 ℃). The effect of the structural transformation of catalysts on the performance of selective oxidation of dimethyl ether (DME) to methyl formate (MF) was studied. It was found that the Mo1Sn2 catalyst calcined at 400 ℃ exhibited good performance in the oxidation of DME to methyl formate, showing a DME conversion of 9.2% and the MF selectivity of 86.9% at 110 ℃ and under atmospheric pressure without the generation of COx. The catalysts were systematically characterized by XRD, Raman, XPS, TPD, H2-TPR and in-situ FT-IR. The results showed that the low-temperature calcination was favorable for the formation of MoOx structure and more Mo5+ species on the catalyst surface, resulting in the enhanced acidity and redox ability of the catalyst, and the increase of medium to strong basic sites on the catalysts. In such case, the activity and methyl formate production of the catalyst were significantly promoted.
  • 加载中
    1. [1]

      SEMELSBERGER T A, BORUP R L, GREENE H L. Dimethyl ether (DME) as an alternative fuel[J]. J Power Sources,2006,156(2):497−511.  doi: 10.1016/j.jpowsour.2005.05.082

    2. [2]

      SUN J, YANG G H, YONEYAMA Y, TSUBAKI N. Catalysis chemistry of dimethyl ether synthesis[J]. ACS Catal,2014,4(10):3346−3356.  doi: 10.1021/cs500967j

    3. [3]

      TAN Y S, XIE H J, CUI H T, HAN Y Z, ZHONG B. Modification of Cu-based methanol synthesis catalyst for dimethyl ether synthesis from syngas in slurry phase[J]. Catal Today,2005,104(1):25−29.  doi: 10.1016/j.cattod.2005.03.033

    4. [4]

      XU M T, LUNSFORD J H, GOODMAN D W, BHATTACHARYYA A. Synthesis of dimethyl ether (DME) from methanol over solid-acid catalysts[J]. Appl Catal A: Gen,1997,149(2):289−301.  doi: 10.1016/S0926-860X(96)00275-X

    5. [5]

      SUN Ming, YU Lin, SUN Chang-yong, SONG Yi-bing, SUN Jian. Application of dimethyl ether and development of its downstream products[J]. Fine Chem,2003,20(11):695−699.  doi: 10.3321/j.issn:1003-5214.2003.11.017

    6. [6]

      CHANG Yan-hong, HAN Yi-zhuo, WANG Xin-kui. Production, application and development of downstream products of dimethyl ether[J]. Nat Gas Chem Ind,2000,25(3):45−49.

    7. [7]

      GAO X J, WANG W F, GU Y Y, ZHANG Z Z, ZHANG J F, ZHANG Q D, TSUBAKI N, HAN Y Z, TAN Y S. Synthesis of polyoxymethylene dimethyl ethers from dimethyl ether direct oxidation over carbon-based catalysts[J]. ChemCatChem,2018,10(1):273−279.  doi: 10.1002/cctc.201701213

    8. [8]

      ZHOU Shou-zu. Production technology and application foreground of methyl formate[J]. Chem Technol Market,2003,26(2):13−18.

    9. [9]

      CHEN Wen-long, LIU Hai-chao. Catalysts and reaction pathways for dehydrogenation and selective oxidation methanol to methyl formate[J]. Chin Sci Bull,2015,60(16):1502−1512.  doi: 10.1360/N972014-01349

    10. [10]

      AI M. The production of methyl formate by the vapor-phase oxidation of methanol[J]. J Catal,1982,77(1):279−288.  doi: 10.1016/0021-9517(82)90168-3

    11. [11]

      LIU G B, ZHANG Q D, HAN Y Z, TSUBAKI N, TAN Y S. Effects of the MoO3 structure of Mo-Sn catalysts on dimethyl ether oxidation to methyl formate under mild conditions[J]. Green Chem,2015,17(2):1057−1064.  doi: 10.1039/C4GC01591F

    12. [12]

      LIU G B, ZHANG Q D, HAN Y Z, TSUBAKI N, TAN Y S. Selective oxidation of dimethyl ether to methyl formate over trifunctional MoO3-SnO2 catalyst under mild conditions[J]. Green Chem,2013,15(6):1501−1504.  doi: 10.1039/c3gc40279g

    13. [13]

      CHEUNG P, LIU H C, IGLESIA E. Kinetics and mechanism of dimethyl ether oxidation to formaldehyde on supported molybdenum oxide domains[J]. J Phys Chem B,2004,108(48):18650−18658.  doi: 10.1021/jp0477405

    14. [14]

      LIU H C, CHEUNG P, IGLESIA E. Zirconia-supported MoOx, catalysts for the selective oxidation of dimethyl ether to formaldehyde: Structure, redox properties, and reaction pathways[J]. J Phys Chem B,2003,107(17):4118−4127.  doi: 10.1021/jp0221744

    15. [15]

      LIU H C, CHEUNG P, IGLESIA E. Structure and support effects on the selective oxidation of dimethyl ether to formaldehyde catalyzed by MoOx domains[J]. J Catal,2003,217(1):222−232.

    16. [16]

      ZHANG Z Z, ZHANG Q D, JIA L Y, WANG W F, ZHANG T, HAN Y Z, TSUBAKI N, TAN Y S. Effects of tetrahedral molybdenum oxide species and MoOx domains on the selective oxidation of dimethyl ether under mild conditions[J]. Catal Sci Technol,2016,6(9):2975−2983.  doi: 10.1039/C5CY01569C

    17. [17]

      ZHANG Z Z, ZHANG Q D, JIA L Y, WANG W F, TIAN S P, WANG P, XIAO H, HAN Y Z, TSUBAKI N, TAN Y S. The effects of the Mo-Sn contact interface on the oxidation reaction of dimethyl ether to methyl formate at a low reaction temperature[J]. Catal Sci Technol,2016,6(15):6109−6117.  doi: 10.1039/C6CY00460A

    18. [18]

      (YANG Qi, GAO Xiu-juan, FENG Ru, LI Ming-jie, ZHANG Jun-feng, ZHANG Qing-de, HAN Yi-zhuo, TAN Yi-sheng. MoO3-SnO2 catalyst prepared by hydrothermal synthesis method for dimethyl ether catalytic oxidation[J]. J Fuel Chem Technol,2019,47(8):934−941.  doi: 10.3969/j.issn.0253-2409.2019.08.005

    19. [19]

      LI A, LONG H, ZHANG H, LI H. High-yield synthesis of Ce modified Fe-Mn composite oxides benefitting from catalytic destruction of chlorobenzene[J]. Rsc Adv,2020,10(17):10030−10037.  doi: 10.1039/C9RA10489E

    20. [20]

      TAO Z, YANG Y, DING M, LI T, XIANG H, LI Y. Effect of calcination behaviors on precipitated iron-manganese Fischer-Tropsch synthesis catalyst[J]. Catal Lett,2007,117(3/4):130−135.  doi: 10.1007/s10562-007-9118-5

    21. [21]

      ZHANG Jian-rong, GAO Lian. Hydrothermal synthesis of tin oxide nanoparticles[J]. J Inorg Mater,2004,19(5):1177−1180.  doi: 10.3321/j.issn:1000-324X.2004.05.034

    22. [22]

      LAKSHMI L J, ALYEA E C. ESR, FT-Raman spectroscopic and ethanol partial oxidation studies on MoO3/SnO2 catalysts made by metal oxide vapor synthesis[J]. Catal Lett,1999,59(1):73−77.  doi: 10.1023/A:1019099900418

    23. [23]

      HERRMANN J M, VILLAIN F, APPEL L G. Characterization of Mo-Sn-O system by means of Raman spectroscopy and electrical conductivity measurements[J]. Appl Catal A: Gen,2003,240(1/2):177−182.  doi: 10.1016/S0926-860X(02)00419-2

    24. [24]

      GONCALVES F, MEDEIROS P R S, EON J G, APPEL L G. Active sites for ethanol oxidation over SnO2-supported molybdenum oxides[J]. Appl Catal A: Gen,2000,193(1/2):195−202.  doi: 10.1016/S0926-860X(99)00430-5

    25. [25]

      HABER J, LALIK E. Catalytic properties of MoO3 revisited[J]. Catal Today,1997,33(1/3):119−137.  doi: 10.1016/S0920-5861(96)00107-1

    26. [26]

      Zhang Q D, TAN Y S, LIU G B, ZHANG J F, HAN Y Z. Rhenium oxide-modified H3PW12O40/TiO2 catalysts for selective oxidation of dimethyl ether to dimethoxy dimethyl ether[J]. Green Chem,2014,16(11):4708−4715.  doi: 10.1039/C4GC01373E

    27. [27]

      TAO Dong-ping, YANG Xian-wan. Kinetics of disproportionation and reduction of stannous oxide and mechanism of reduction of stannic oxide[J]. Chin J Nonferrous Met,1998,8(1):126−130.  doi: 10.3321/j.issn:1004-0609.1998.01.027

    28. [28]

      DU Ying-hui, XU Guo-ji. Hydrogen reduction of metal oxides to metals[J]. Atom Energy Sci Technol,1999,33(4):360−362.  doi: 10.3969/j.issn.1000-6931.1999.04.020

    29. [29]

      TAN X J, WANG L Z, CHENG C, YAN X F, SHEN B, ZHANG J L. Plasmonic MoO3−x @MoO3 nanosheets for highly sensitive SERS detection through nanoshell-isolated electromagnetic enhancement[J]. Chem Commun,2016,52(14):2893−2896.  doi: 10.1039/C5CC10020H

    30. [30]

      SWIATOWSKA-MROWIECKA J, DE DIESBACH S, MAURICE V, ZANNA S, KLEIN L, BRIAND E, VICKRIDGE I, MARCUS P. Li-ion intercalation in thermal oxide thin films of MoO3 as studied by XPS, RBS, and NRA[J]. J Phys Chem C,2008,112(29):11050−11058.  doi: 10.1021/jp800147f

    31. [31]

      YANG Qi. Study on the mechanism of the low-temperature oxidation of dimethyl ether over MoO3-SnO2 catalyst[D]. Beijing: University of Chinese Academy of Sciences, 2019.

    32. [32]

      LOCHAR V. FT-IR study of methanol, formaldehyde and methyl formate adsorption on the surface of Mo/Sn oxide catalyst[J]. Appl Catal A: Gen,2006,309(1):33−36.  doi: 10.1016/j.apcata.2006.04.030

  • 加载中
    1. [1]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    2. [2]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    3. [3]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    4. [4]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    5. [5]

      Qiuyu Ming Huijun Jiang Zhihao Zhang . A Sightseeing Tour of Folic Acid Processing Plant. University Chemistry, 2024, 39(9): 11-15. doi: 10.12461/PKU.DXHX202404092

    6. [6]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    7. [7]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    10. [10]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    11. [11]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    12. [12]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    13. [13]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    14. [14]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    15. [15]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    16. [16]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    17. [17]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    18. [18]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    19. [19]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    20. [20]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

Metrics
  • PDF Downloads(0)
  • Abstract views(834)
  • HTML views(180)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return