Citation: Chen CHEN, Hai-jie LI, Yang BAI, Fu-xiang FENG, Lei TIAN, Yong YANG, Yuan LIU, Qiang GUO. Effect of sulfidation temperature on component transformation and catalytic performance of direct coal liquefaction catalyst[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(1): 54-62. doi: 10.1016/S1872-5813(21)60118-4 shu

Effect of sulfidation temperature on component transformation and catalytic performance of direct coal liquefaction catalyst

Figures(7)

  • A series of iron sulfide catalysts were prepared in 5% H2S/N2 atmosphere at different pre-sulfidation temperatures, and their catalytic activity for naphthalene hydrogenation was studied at 360 ℃ in 1% H2S/H2 atmosphere at 5 MPa. The component transformation of the catalyst under varied pre-sulfidation temperature and reaction conditions was researched using MES, XRD and XPS. The results revealed that the sulfidation process was in the form of sulfurizing from surface to interior in the order of FeS2→FeS, Fe1–xS→Fe3S4→Fe2O3 during which transferring sulfur to the body phase was benefited from the rise of temperature. After contacting 1% H2S/H2 gas, the particles rapidly transformed to Fe1–xS from outside to the inside. By adjusting sulfidation conditions, the Fe1–xS content was high while the particle size was small, which made it possible to obtain the greatest activity of the catalyst.
  • 加载中
    1. [1]

      GUO M, XU Y. Coal-to-liquids projects in China under water and carbon constraints[J]. Energy Policy,2018,117:58−65.  doi: 10.1016/j.enpol.2018.02.038

    2. [2]

      LIU Z, GUAN D B, WEI W, DAVIS S J, CIAIS P, BAI J, PENG S S, ZHANG Q, HUBACEK K, MARLAND G, ANDRES R J, CRAWFORD-BROWN D, LIN J T, ZHAO H Y, HONG C P, BODEN T A, FENG K S, PETERS G P, XI F M, LIU J G, LI Y, ZHAO Y, ZENG N, HE K B. Reduced carbon emission estimates from fossil fuel combustion and cement production in China[J]. Nature,2015,524(7565):335−338.  doi: 10.1038/nature14677

    3. [3]

      SHUI H, CAI Z, XU C. Recent advances in direct coal liquefaction[J]. Energies,2010,3(2):155−170.  doi: 10.3390/en3020155

    4. [4]

      XIE J, LU H, SHU G, LI K, ZHANG X, WANG H, YUE W, GAO S, CHEN Y. The relationship between the microstructures and catalytic behaviors of iron-oxygen precursors during direct coal liquefaction[J]. Chin J Catal,2018,39(4):857−866.  doi: 10.1016/S1872-2067(17)62919-X

    5. [5]

      HIRANO K, KOUZU M, OKADA T, KOBAYASHI M, IKENAGA N, SUZUKI T. Catalytic activity of iron compounds for coal liquefaction[J]. Fuel,1999,78(15):1867−1873.  doi: 10.1016/S0016-2361(99)00095-2

    6. [6]

      IKENAGA N-O, UEDA C, MATSUI T, OHTSUKI M, SUZUKI T. Co-liquefaction of micro algae with coal using coal liquefaction catalysts[J]. Energy Fuels,2001,15(2):350−355.  doi: 10.1021/ef000129u

    7. [7]

      MONTANO P A, VAISHNAVA P P, KING J A, EISENTROUT E N. Mössbäuer study of decomposition of pyrite in hydrogen[J]. Fuel,1981,60(8):712−716.  doi: 10.1016/0016-2361(81)90224-6

    8. [8]

      IKENAGA N-O, TANIGUCHI H, WATANABE A, SUZUKI T. Sulfiding behavior of iron based coal liquefaction catalyst[J]. Fuel,2000,79(3):273−283.

    9. [9]

      HUFFMAN G P, GANGULY B, ZHAO J, RAO K R P M, SHAH N, FENG Z, HUGGINS F E, TAGHIEI M M, LU F. Structure and dispersion of iron-based catalysts for direct coal liquefaction[J]. Energy Fuels,1993,7(2):285−296.  doi: 10.1021/ef00038a020

    10. [10]

      KANEKO T, TAZAWA K, KOYAMA T, SATOU K, SHIMASAKI K, KAGEYAMA Y. Transformation of iron catalyst to the active phase in coal liquefaction[J]. Energy Fuels,1998,12(5):897−904.  doi: 10.1021/ef9702310

    11. [11]

      KANEKO T, SUGITA S, TAMURA M, SHIMASAKI K, MAKINO E, SILALAHI L H. Highly active limonite catalysts for direct coal liquefaction[J]. Fuel,2002,81(11/12):1541−1549.  doi: 10.1016/S0016-2361(02)00079-0

    12. [12]

      GUO Gui-gui. Analysis of catalyst vulcanization of coal direct liquefaction to oil hydrogenation modification combination[J]. Energy Sci Technol,2013,11(6):68−72.  doi: 10.3969/j.issn.1674-8492.2013.06.022

    13. [13]

      WANG Zhong-yi, YAN Zuo-jie, SHAN Min, CHEN Ping-ping, TONG Jian. Application summary of start-up technology of ex-situ presulfiding hydrocracking catalyst[J]. Pet Refin Eng,2021,51(1):10−12+32.  doi: 10.3969/j.issn.1002-106X.2021.01.003

    14. [14]

      SUN Xin-xin, YUAN Ming-yao, WU Xue-qing. Study on ex-situ presulfurization of selective hydrogenation catalyst[J]. Pet Refin Eng,2020,50(12):42−45.  doi: 10.3969/j.issn.1002-106X.2020.12.012

    15. [15]

      TAO Shuai-jiang. Progress in presulfurization technology for hydrotreating catalyst[J]. Angang Technol,2020,(4):9−12.  doi: 10.3969/j.issn.1006-4613.2020.04.002

    16. [16]

      ZHANG Li, FAN Wen-qing, XIAO Wen-can, XU Lin, LIU Chang-kun. Study on the technology of pre-sulfurization for hydrogenated catalyst[J]. Guangdong Chem Ind,2020,47(12):126−127.  doi: 10.3969/j.issn.1007-1865.2020.12.053

    17. [17]

      JIN Ji-hai, LIU Li-zhi, SONG Jun-hui, JIAO Zu-kai, YAN Jin-long, ZHEN Tao, ZHANG Duo. Study on hydrodeacidification performance of off-site pre-sulfidation catalysts[J]. Inorg Chem Ind,2020,52(9):100−104.

    18. [18]

      DE WIND M, HEINERMAN J J L, LEE S L, PLANTENGA F L. Air quality and economics spur use of presulfided catalysts[J]. Oil Gas J,1992,90(8):49−53.

    19. [19]

      DJEGA-MARIADASSOU G, BESSON M, BRODZKI D, CHARCOSSET H, TRAN VINH H, VARLOUD J. Evolution of highly dispersed catalysts during hydroliquefaction of coal[J]. Fuel Process Technol,1986,12:143−153.  doi: 10.1016/0378-3820(86)90072-X

    20. [20]

      LAMBERT J M, SIMKOVICH G, WALKER P L. Production of pyrrhotites by pyrite reduction[J]. Fuel,1980,59(10):687−690.  doi: 10.1016/0016-2361(80)90019-8

    21. [21]

      KONDORO J W A. Mossbauer study of vacancies in natural pyrrhotite[J]. J Alloys Compd,1999,289(1/2):36−41.  doi: 10.1016/S0925-8388(99)00170-X

    22. [22]

      JEANDEY C, ODDOU J L, MATTEI J L, FILLION G. Mössbauer investigation of the pyrrhotite at low temperature[J]. Solid State Commun,1991,78(3):195−198.  doi: 10.1016/0038-1098(91)90282-Z

    23. [23]

      CHANG L, ROBERTS A P, TANG Y, RAINFORD B D, MUXWORTHY A R, CHEN Q W. Fundamental magnetic parameters from pure synthetic greigite (Fe3S4)[J]. J Geophys Res-Sol Ea,2008,113(B6):1−16.

    24. [24]

      CUDA J, KOHOUT T, TUCEK J, FILIP J, MALINA O, KRIZEK M, ZBORIL R. Mossbauer Spectroscopy in Materials Science[M]. New York: AIP Publishing, 2014: 8−11.

    25. [25]

      MONTANO P A, SEEHRA M S. Magnetism of iron pyrite (FeS2) - a Mossbauer study in an external magnetic-field[J]. Solid State Commun,1976,20(9):897−898.  doi: 10.1016/0038-1098(76)91300-4

    26. [26]

      OH S J, COOK D C, TOWNSEND H E. Characterization of iron oxides commonly formed as corrosion products on steel[J]. Hyperfine Interact,1998,112(1/4):59−65.

    27. [27]

      KOBZI B, WATANABE Y, AKIYAMA K, KUZMANN E, HOMONNAY Z, KREHULA S, RISTIĆ M, NISHIDA T, KUBUKI S. 57Fe-Mössbauer study and methylene blue decomposing effect of nanoparticle mixtures composed of metallic iron and maghemite[J]. J Alloys Compd,2017,722:94−100.  doi: 10.1016/j.jallcom.2017.06.083

    28. [28]

      KUBONO I, NISHIDA N, KOBAYASHI Y, YAMADA Y. Mossbauer spectra of iron (III) sulfide particles[J]. Hyperfine Interact,2017,238:1−10.  doi: 10.1007/s10751-016-1375-5

    29. [29]

      ZHAO R, YANG L, SONG X, ZHANG W, WANG B, HUANG S, WU S, WU Y. Effects of sulfur additive on the transformation behaviors of γ-Fe2O3 and coal liquefaction performances under mild conditions[J]. Asia-Pac J Chem Eng,2018,13(4):1−9.

    30. [30]

      ZUO W B, PELENOVICH V, LI Q D, ZENG X M, FU D J. Study on velocity mode of Fe-57 Mossbauer spectroscopy and determination of lattice dynamics in Fe3S4[J]. Results Phys,2019,12:1214−1217.  doi: 10.1016/j.rinp.2019.01.010

    31. [31]

      SKINNER B J, GRIMALDI F S, ERD R C. Greigite thio-spinel of iron-new mineral[J]. Am Mineral,1964,49(5/6):543−555.

    32. [32]

      SADEGH-VAZIRI R, BABLER M U. Removal of hydrogen sulfide with metal oxides in packed bed reactors-a review from a modeling perspective with practical implications[J]. Appl Sci-Basel,2019,9(24):1−24.

    33. [33]

      MORRISH R, SILVERSTEIN R, WOLDEN C A. Synthesis of stoichiometric FeS2 through plasma-assisted sulfurization of Fe2O3 nanorods[J]. J Am Chem Soc,2012,134(43):17854−17857.  doi: 10.1021/ja307412e

    34. [34]

      YU L, LANY S, KYKYNESHI R, JIERATUM V, RAVICHANDRAN R, PELATT B, ALTSCHUL E, PLATT H A S, WAGER J F, KESZLER D A, ZUNGER A. Iron chalcogenide photovoltaic absorbers[J]. Adv Energy Mater,2011,1(5):748−753.  doi: 10.1002/aenm.201100351

    35. [35]

      JAGADEESH M S, SEEHRA M S. Thermomagnetic studies of conversion of pyrite and marcasite in different atmospheres (vacuum, H2, He And CO)[J]. J Phys D Appl Phys,1981,14(11):2153−2167.  doi: 10.1088/0022-3727/14/11/023

    36. [36]

      HONG Y, FEGLEY B. The kinetics and mechanism of pyrite thermal decomposition[J]. Ber Bunsen-Ges Phys,1997,101(12):1870−1881.  doi: 10.1002/bbpc.19971011212

  • 加载中
    1. [1]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    2. [2]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    3. [3]

      Jun DongSenyuan TanSunbin YangYalong JiangRuxing WangJian AoZilun ChenChaohai ZhangQinyou AnXiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010

    4. [4]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    5. [5]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    6. [6]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    7. [7]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    8. [8]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    9. [9]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    10. [10]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    11. [11]

      Yuwei LiuYihui ZhuWeijian DuanYizhuo YangHaorui TuoChunhua Feng . Electrocatalytic nitrate reduction on Fe, Fe3O4, and Fe@Fe3O4 cathodes: Elucidating structure-sensitive mechanisms of direct electron versus hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(6): 110347-. doi: 10.1016/j.cclet.2024.110347

    12. [12]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    13. [13]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    14. [14]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    15. [15]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    16. [16]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    17. [17]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    18. [18]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    19. [19]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    20. [20]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

Metrics
  • PDF Downloads(0)
  • Abstract views(653)
  • HTML views(162)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return