Citation: Yang LI, Zi-long LU, He YANG, Li-jun JIN, Hao-quan HU. Release characteristics of arsenic, selenium, lead and transformation of minerals during ashing process of coal[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(1): 11-18. doi: 10.1016/S1872-5813(21)60115-9 shu

Release characteristics of arsenic, selenium, lead and transformation of minerals during ashing process of coal

  • Corresponding author: Hao-quan HU, hhu@dlut.edu.cn
  • Received Date: 8 April 2021
    Revised Date: 10 May 2021

Figures(7)

  • In this paper, two kinds of coal (Baiyinhua lignite and coal using in Ezhou Power Plant) were selected to study the occurrence of heavy metals including arsenic (As), selenium (Se) and lead (Pb) in coal and their release behaviors during the ashing process. The influence of ashing conditions on the mineral conversion was also examined by the combination with the changes of minerals in coal. The burn-out temperature of the coal was determined from the thermal weight loss curve by extrapolation method, and then the coal sample was ashed according to the National Standard Method of China. The obtained ash samples were characterized by XRD, XRF, and TG-DTG to analyze the change characteristics of coal minerals at different ashing temperatures. The content and occurrence of As, Se and Pb in coal samples were extracted by sequential chemical extraction method. The heavy metals in the ash sample were extracted by HNO3 + HF, and the heavy metal content in the extract was detected by Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The results show that the heavy metal in BYH coal is mainly As in the form of sulfide bound state, which leads to the increasing volatility of As with temperature easily. However, the heavy metal in EZ is mainly sulfide-bound Pb, which makes it easy to release with temperature. Se in coal mainly exists in the form of organic bound state and sulfide bound state. During coal ashing, kaolin is gradually dehydroxylated into metakaolin and finally converted into mullite; pyrite is oxidized to form hematite; gypsum is dehydrated to form anhydrite. The release rate of heavy metals is greatly affected by the combustion temperature during the ashing process. High content of heavy metals in the sulfide bound state results in high release rate with increasing the temperature.
  • 加载中
    1. [1]

      National Bureau of Statistics[DB/OL]. https://data.stats.gov.cn/easyquery.htm?cn=C01&zb=A070E&sj=2020.

    2. [2]

      CHENG C M, PAULINE H, PAUL C, CHANG Y N, LIN T Y. Partitioning of mercury, arsenic, selenium, boron, and chloride in a full-scale coal combustion process equipped with selective catalytic reduction, electrostatic precipitation, and flue gas desulfurization systems[J]. Energy Fuels,2009,23:4805−4816.  doi: 10.1021/ef900293u

    3. [3]

      GUO J F, YAO D X, CHEN P, CHEN J, SHI F J. Distribution, enrichment and modes of occurrence of arsenic in Chinese coals[J]. Minerals,2017,7(7):1−23.

    4. [4]

      TESSIE R A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Anal Chem,1979,51(7):844−851.  doi: 10.1021/ac50043a017

    5. [5]

      QUEVAUVILLE R Ph, RAURET G, GRIEPINK B. Single and sequential extraction in sediments and soils[J]. Int J Environ Anal Chem,1993,51(1/2/3/4):231−235.

    6. [6]

      LUO Yun, GIAMMAR D E, HUHMANN B L, CATALANO J G. Speciation of selenium, arsenic, and zinc in class C fly ash[J]. Energy Fuels,2011,25(7):2980−2987.  doi: 10.1021/ef2005496

    7. [7]

      ZHU Zhen-wu, ZHUO Yu-quan. Effect of acid systems for determination of trace elements in coal combustion byproducts using microwave digestion method[J]. J Qinghua Univ,2016,56(10):1072−1078.

    8. [8]

      YU Z S, SUN X L, ZHANG Q. Using 37Cl16O/52Cr to correct 40Ar35Cl interference for the analysis of arsenic in geo-chemical exploration samples by inductively coupled plasma-mass spectrometry[J]. Chin J Anal Chem,2008,36(11):1571−1574.

    9. [9]

      GOODARZI F, GENTZIS T, HOFMEISTER M. Elemental composition of fluvial-lacustrine and lacustrine coal-bearing environments, british columbia, canada[J]. Energy Fuels,2020,34(12):16046−16058.  doi: 10.1021/acs.energyfuels.0c03025

    10. [10]

      SONG D Y, QIN Y, ZHANG J Y, WANG W F, ZHANG C G. Concentration and distribution of trace elements in some coals from Northern China[J]. Int J Coal Geol,2007,69(3):179−191.  doi: 10.1016/j.coal.2006.04.001

    11. [11]

      COLEMAN L, BRAGG L J, FINKELMAN R B. Distribution and mode of occurrence of selenium in united-states coals[J]. Environ Geochem HLTH,1993,15(4):215−227.  doi: 10.1007/BF00146745

    12. [12]

      YANG Yan-mei, YANG xin-hua, LIU Qing, ZHANG Hai, LV Jun-fu. Effect of ashing temperature on analysis of Zhundong coal ash[J]. J China Coal Soc,2016,41(10):2441−2447.

    13. [13]

      KANG Y, LIU G J, CHOU C L, WONG M H, ZHENG L G, DING R. Arsenic in Chinese coals: Distribution, modes of occurrence, and environmental effects[J]. Sci Total Environ,2011,412−413:1−13.  doi: 10.1016/j.scitotenv.2011.10.026

    14. [14]

      DAI Shi-feng, REN De-yi, LI Sheng-sheng. Occurrence and sequential chemical extraction of rare earth element in coals and seam roofs[J]. J China Univ Min Technol,2002,31(5):349−353.  doi: 10.3321/j.issn:1000-1964.2002.05.003

    15. [15]

      LIU Jing, ZHENG Chu-guang, ZHANG Jun-ying, WANG Man-hui. Study on the speciation of most volatile trace elements in coal[J]. J Combust Sci Technol,2003,9(4):295−299.  doi: 10.3321/j.issn:1006-8740.2003.04.002

    16. [16]

      WANG Qing, LIU Tong, BAI Jing-ru, JIAO Guo-jun, WEI Yan-zhen. Sequential chemical extraction technology and its applications in coal trace element occurrence study[J]. Technol Develop Chem Ind,2010,39(4):25−29.  doi: 10.3969/j.issn.1671-9905.2010.04.009

    17. [17]

      WANG C B, LIU H M, ZHANG Y, ZOU C, EDWARD J A. Review of arsenic behavior during coal combustion: Volatilization, transformation, emission and removal technologies[J]. Prog Energy Combust Sci,2018,68:1−28.  doi: 10.1016/j.pecs.2018.04.001

    18. [18]

      HU G Q, LIU G J, WU D, FU B. Geochemical behavior of hazardous volatile elements in coals with different geological origin during combustion[J]. Fuel,2018,233:361−376.

    19. [19]

      GONG Hong-yu, HU Hong-yun, LIU Hui-min, LI Shuai, HUANG Yong-da, FU Biao, LUO Guang-qian, YAO Hong. Review of arsenic transformation and emission control during coal combustion[J]. Proc CSEE,2020,40(22):7337−7349.

    20. [20]

      HAN Jun, WANG Guang-hui, XU Minghou, YAO Hong. Experimental study of As and Se’s vaporization during coal combustion and pyrolysis[J]. J Huazhong Univ Sci Technol,2009,37(5):113−119.

    21. [21]

      FANG T, LIU G J, ZHOU C C, SUN R Y, CHEN J, WU D. Lead in Chinese coals: Distribution, modes of occurrence, and environmental effects[J]. Environ Geochem HLTH,2014,36(3):563−81.  doi: 10.1007/s10653-013-9581-4

    22. [22]

      WANG C A, LIU Y He, ZHANG X M, CHE D F. A Study on coal properties and combustion characteristics of blended coals in northwestern China[J]. Energy Fuels,2011,25(8):3634−3645.  doi: 10.1021/ef200686d

    23. [23]

      ZHANG Xiao-yu, ZHANG Hai-xia, NA Yong-jie. Migration characteristics and morphological changes of sodium during ashing process of Zhundong coal[J]. Clean Coal Technol,2015,21(2):45−55.

    24. [24]

      YANG Y H, HU H Y, XIE K, HUANG Y D, LIU H, LI X, YAO H, ICHIRO N. Insight of arsenic transformation behavior during high-arsenic coal combustion[J]. Proc Combust Inst,2019,37(4):4443−4450.  doi: 10.1016/j.proci.2018.07.064

    25. [25]

      YU Dun-xi, XU Ming-hou, YAO Hong, LIU Xiao-wei, ZHOU Ke. Transformation of inorganic minerals into particulate matter during coal combustion[J]. J Eng Thermophys,2008,29(3):507−510.  doi: 10.3321/j.issn:0253-231X.2008.03.037

    26. [26]

      ZHAN Jing, XU Ming-hou, HAN Jun, QIAO Yu, CAI Ming. Research on the volatilization behavior of arsenic and selenium during coal combustion[J]. J Eng Thermophys,2004,25:201−204.  doi: 10.3321/j.issn:0253-231X.2004.02.006

  • 加载中
    1. [1]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    2. [2]

      Tiancheng Yang Yang Yang Chunhua Qu Rui Chu Yue Xia . Wandering through the Kingdom of Chinese Mineral Medicines. University Chemistry, 2024, 39(9): 94-101. doi: 10.12461/PKU.DXHX202403015

    3. [3]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    4. [4]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

    5. [5]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    6. [6]

      Tao Yang Kaijiao Duan Siyu Li Jing Wei Qingdi Yang Qian Wang . A Comprehensive and Innovative Chemical Experimental Teaching: Extraction and Identification of Tea Polyphenols from Pu'er Tea and the Application in Hand Cream Making. University Chemistry, 2024, 39(8): 270-275. doi: 10.3866/PKU.DXHX202312040

    7. [7]

      Jiangjuan Shao Xuan Li Jingdan Weng Xiaolei Chen Fei Xu Yulu Ma Nianguang Li Shizhong Zheng . Improvement in the Experimental Teaching Design of Physical and Chemical Identification and Quantification of Mineral Drugs. University Chemistry, 2024, 39(10): 137-142. doi: 10.3866/PKU.DXHX202312079

    8. [8]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    9. [9]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    10. [10]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    11. [11]

      Sifang Zhang Yanli Tan Yu Tao Jiaoyan Zhao Haihong Zhu . Exploration and Practice of Ideological and Political Cases in the Course of Chemistry History and Methodology. University Chemistry, 2024, 39(10): 377-388. doi: 10.12461/PKU.DXHX202312067

    12. [12]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    13. [13]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    14. [14]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    15. [15]

      Yu'ang Liu Yuechao Wu Junyu Huang Tao Wang Xiaohong Liu Tianying Yan . Computation of Absolute Electrode Potential of Standard Hydrogen Electrode Using Ab Initio Method. University Chemistry, 2025, 40(3): 215-222. doi: 10.12461/PKU.DXHX202407112

    16. [16]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    17. [17]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    18. [18]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    19. [19]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    20. [20]

      Wanqun Hu Pingping Zhu Yuan Zheng Wanqun Zhang Wei Shao Hong Wu Qiang Zhou Kaiping Yang Xiang Sheng . Design and Practice of Ideological and Political Case Study in Instrumental Analysis Experiment Course: the Extraction and Structural Identification of Artemisinin. University Chemistry, 2024, 39(2): 203-207. doi: 10.3866/PKU.DXHX202310062

Metrics
  • PDF Downloads(0)
  • Abstract views(1155)
  • HTML views(299)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return