Citation: Yi-lang MAI, Xiang-sheng XIE, Zhi-da WANG, Chang-feng YAN, Guang-hua LIU. Effect of heat treatment temperature on the Pt3Co binary metal catalysts for oxygen reduced reaction and DFT calculations[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(1): 114-121. doi: 10.1016/S1872-5813(21)60099-3 shu

Effect of heat treatment temperature on the Pt3Co binary metal catalysts for oxygen reduced reaction and DFT calculations

  • Corresponding author: Chang-feng YAN, yancf@ms.giec.ac.cn
  • Received Date: 19 March 2021
    Revised Date: 29 April 2021

Figures(6)

  • Synthesis of low-cost, high-activity and high-stability Pt-based catalysts is of great importance to the large commercialization of proton exchange membrane fuel cell (PEMFC). Doping non-precious metals such as cobalt (Co) with Pt is attractive due to the reduced depletion of Pt and, more importantly, the enhanced activity on the oxygen reduction reaction (ORR) compared with pure Pt. In this work, carbon-supported platinum-cobalt nanoparticles (NPs) were prepared by the impregnation reduction method for the ORR catalyst. By changing the heat treatment temperature, the structure, the crystal phase and the size of the Pt3Co nanoparticles could be controlled. TEM and XRD characterizations show that larger size NPs with higher alloying degree are obtained at higher temperature. The electrochemical results demonstrate that the Pt3Co NPs at 800 ℃ have the highest mass activity (0.41 A/mgPt) and the best stability among all the samples due to their lower particle size and higher alloying degree. Further Density functional theory (DFT) calculation shows that the surface of the Pt3Co structure with high alloying degree can reduce the rate-determining step barrier and improve the ORR activity.
  • 加载中
    1. [1]

      SHAO M, CHANG Q, DODELET, CHENITZ R. Recent advances in electrocatalysts for oxygen reduction reaction[J]. Chem Rev,2016,116(6):3594−3657.  doi: 10.1021/acs.chemrev.5b00462

    2. [2]

      JIA Q, CALDWELL K, STRICKLAND K, ZIEGELBAUER J M, LIU Z, YU Z, RAMAKER D E, MUKERJEE S. Improved oxygen reduction activity and durability of dealloyed PtCox catalysts for proton exchange membrane fuel cells: Strain, ligand, and particle size effects[J]. ACS Catal,2015,5(1):176−186.  doi: 10.1021/cs501537n

    3. [3]

      YU Y, YANG W, SUN X, ZHU W, LI X, SELLMYER D J, SUN S. Monodisperse MPt (M = Fe, Co, Ni, Cu, Zn) nanoparticles prepared from a facile oleylamine reduction of metal salts[J]. Nano Lett,2014,14(5):2778−2782.  doi: 10.1021/nl500776e

    4. [4]

      ANTOLINI E, SALGADO JRC, GIZ M J, GONZALEZ E R. Effects of geometric and electronic factors on ORR activity of carbon supported Pt-Co electrocatalysts in PEM fuel cells[J]. Int J Hydrogen Energy,2005,30(11):1213−1220.  doi: 10.1016/j.ijhydene.2005.05.001

    5. [5]

      LI Q, WU L, WU G, SU D, LV H, ZHANG S, ZHU W, CASIMMR A, ZHU H, GARCIA A M, SUN S. New approach to fully ordered fct-FePt nanoparticles for much enhanced electrocatalysis in acid[J]. Nano Lett,2015,15(4):2468−2473.  doi: 10.1021/acs.nanolett.5b00320

    6. [6]

      LI J, SHARMA S, LIU X, PAN Y, SPENDELOW J S, CHI M, JIA Y, ZHANG P, CULLEN D A, XI Z, LIN H, YIN Z, SHEN B, MUZZIO M, YU C, KIM Y S, PETERSON A A, MORE K L, SUN S. Hard-magnet L10-CoPt nanoparticles advance fuel cell catalysis[J]. Joule,2019,3(1):124−135.  doi: 10.1016/j.joule.2018.09.016

    7. [7]

      WANG D, XIN H L, HOVDEN R, WANG H, YU Y, MULLER D A, DISALVO F J, ABRUNA H D. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts[J]. Nat Mater,2013,12(1):81−87.  doi: 10.1038/nmat3458

    8. [8]

      ZHANG B, FU G, LI Y, LIANG L, GRUNDISH N S, TANG Y, GOODENOUGH J B, CUI Z. General strategy for synthesis of ordered Pt3M intermetallics with ultrasmall particle size[J]. Angew Chem Int Ed Eng,2020,59(20):7857−7863.  doi: 10.1002/anie.201916260

    9. [9]

      LÜ Ying-rong, SUN Wei-yan, WANG Feng. Highly active PtCo-CNT@TiO2 composite nanoanode catalyst for direct methanol fuel cells[J]. J Fuel Chem Technol,2019,47(12):1522−1528.  doi: 10.3969/j.issn.0253-2409.2019.12.012

    10. [10]

      ZHAO Hai-dong, LU Zhen, LIU Rui, Li Zuo-peng, Guo yong. Preparation of platinum-silver alloy nanoparticles and their catalytic performance in methanol electro-oxidation[J]. J Fuel Chem Technol,2020,48(8):1015−1024.  doi: 10.3969/j.issn.0253-2409.2020.08.014

    11. [11]

      YANG Gai-xiu, WANG Ke-xin, ZHANG Ze-zhen, ZHEN Feng, SUN Yong-ming. Preparation of MnO2 catalyst by electrochemical deposition and its application in the microbial fuel cells[J]. J Fuel Chem Technol,2020,48(7):889−896.  doi: 10.3969/j.issn.0253-2409.2020.07.015

    12. [12]

      GUO S, ZHANG S, SUN S. Tuning nanoparticle catalysis for the oxygen reduction reaction[J]. Angew Chem Int Ed Eng,2013,52(33):8526−8544.  doi: 10.1002/anie.201207186

    13. [13]

      CHOI D S, ROBERTSON A W, WARNER J H, KIM S Q, KIM H. Low-temperature chemical vapor deposition synthesis of Pt-Co alloyed nanoparticles with enhanced oxygen reduction reaction catalysis[J]. Adv Mater Weinheim,2016,28(33):7115−7122.  doi: 10.1002/adma.201600469

    14. [14]

      JUNG W S, POPOV B N. New method to synthesize highly active and durable chemically ordered fct-PtCo cathode catalyst for PEMFCs[J]. ACS Appl Mater Interfaces,2017,9(28):23679−23686.  doi: 10.1021/acsami.7b04750

    15. [15]

      WANG C, MARKOVIC N M, STAMENKOVIC V R. Advanced platinum alloy electrocatalysts for the oxygen reduction reaction[J]. ACS Catal,2012,2(5):891−898.  doi: 10.1021/cs3000792

    16. [16]

      XIA B Y, WU H B, LI N, YAN Y, LOU X W, WANG X. One-pot synthesis of Pt-Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties[J]. Angew Chem,2015,127(12):3868−3872.  doi: 10.1002/ange.201411544

    17. [17]

      KNUPP S L, LI W, PASCHOS O, MURRAY T M, SNYDER J, HALDAR P. The effect of experimental parameters on the synthesis of carbon nanotube/nanofiber supported platinum by polyol processing techniques[J]. Carbon,2008,46(10):1276−1284.  doi: 10.1016/j.carbon.2008.05.007

    18. [18]

      LOUKRAKPAM R, LUO J, HE T, CHEN Y, XU Z, NJOKI P N, WANJALA B N, FANG B, MOTT D, YIN J, KLAR J, POWELL B, ZHONG C. Nanoengineered PtCo and PtNi catalysts for oxygen reduction reaction: An assessment of the structural and electrocatalytic properties[J]. J Phys Chem C,2011,115(5):1682−1694.  doi: 10.1021/jp109630n

    19. [19]

      SCHMIES H, HORNBERGER E, ANKE B, JURZINSKY T, NONG H N, DIONIGI F, KUHL S, DRNEC J, LERCH M, CREMERS C, STRASSER P. Impact of carbon support functionalization on the electrochemical stability of Pt fuel cell catalysts[J]. Chem Mater,2018,30(20):7287−7295.  doi: 10.1021/acs.chemmater.8b03612

    20. [20]

      CAI Y, GAO P, WANG F, ZHU H. Carbon supported chemically ordered nanoparicles with stable Pt shell and their superior catalysis toward the oxygen reduction reaction[J]. Electrochimica Acta,2017,245:924−933.  doi: 10.1016/j.electacta.2017.04.173

    21. [21]

      WEI C, RAO R R, PENG J, HUANG B, STEPHENS I E L, RISCH M, XU Z J, HORN Y S. Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells[J]. Adv Mater Weinheim,2019,31(31):e1806296.  doi: 10.1002/adma.201806296

    22. [22]

      BAHN S R, JACOBSEN K W. An object-oriented scripting interface to a legacy electronic structure code[J]. Comput Sci Eng,2002,4(3):56−66.  doi: 10.1109/5992.998641

    23. [23]

      HAMMER B, HANSEN L B, NøRSKOV J K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals[J]. Phys Rev B,1999,59(11):7413−7421.  doi: 10.1103/PhysRevB.59.7413

    24. [24]

      SETHURAMAN V A, VAIRAVAPANDIAN D, LAFOURESSE M C, MAARK T A, KARAN N, SUN S, BERTOCCI U, PETERSON A A, STAFFORD G R, GUDURU P R. Role of elastic strain on electrocatalysis of oxygen reduction reaction on Pt[J]. J Phys Chem C,2015,119(33):19042−19052.  doi: 10.1021/acs.jpcc.5b06096

    25. [25]

      FROST K, KAMINSKI D, KIRWAN G, LASCARIS E, SHANKS R. Crystallinity and structure of starch using wide angle X-ray scattering[J]. Carbohydrate Polymers,2009,78(3):543−548.  doi: 10.1016/j.carbpol.2009.05.018

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    4. [4]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    5. [5]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    6. [6]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    7. [7]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    8. [8]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    9. [9]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    10. [10]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    11. [11]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    12. [12]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    15. [15]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    16. [16]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    17. [17]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    18. [18]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    19. [19]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    20. [20]

      Mingxuan Qi Lanyu Jin Honghe Yao Zipeng Xu Teng Cheng Qi Chen Cheng Zhu Yang Bai . 钙钛矿太阳能电池在反向偏压下的电学失效及稳定性研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-. doi: 10.1016/j.actphy.2025.100088

Metrics
  • PDF Downloads(0)
  • Abstract views(699)
  • HTML views(236)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return