Citation: Yi-lang MAI, Xiang-sheng XIE, Zhi-da WANG, Chang-feng YAN, Guang-hua LIU. Effect of heat treatment temperature on the Pt3Co binary metal catalysts for oxygen reduced reaction and DFT calculations[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(1): 114-121. doi: 10.1016/S1872-5813(21)60099-3 shu

Effect of heat treatment temperature on the Pt3Co binary metal catalysts for oxygen reduced reaction and DFT calculations

  • Corresponding author: Chang-feng YAN, yancf@ms.giec.ac.cn
  • Received Date: 19 March 2021
    Revised Date: 29 April 2021

Figures(6)

  • Synthesis of low-cost, high-activity and high-stability Pt-based catalysts is of great importance to the large commercialization of proton exchange membrane fuel cell (PEMFC). Doping non-precious metals such as cobalt (Co) with Pt is attractive due to the reduced depletion of Pt and, more importantly, the enhanced activity on the oxygen reduction reaction (ORR) compared with pure Pt. In this work, carbon-supported platinum-cobalt nanoparticles (NPs) were prepared by the impregnation reduction method for the ORR catalyst. By changing the heat treatment temperature, the structure, the crystal phase and the size of the Pt3Co nanoparticles could be controlled. TEM and XRD characterizations show that larger size NPs with higher alloying degree are obtained at higher temperature. The electrochemical results demonstrate that the Pt3Co NPs at 800 ℃ have the highest mass activity (0.41 A/mgPt) and the best stability among all the samples due to their lower particle size and higher alloying degree. Further Density functional theory (DFT) calculation shows that the surface of the Pt3Co structure with high alloying degree can reduce the rate-determining step barrier and improve the ORR activity.
  • 加载中
    1. [1]

      SHAO M, CHANG Q, DODELET, CHENITZ R. Recent advances in electrocatalysts for oxygen reduction reaction[J]. Chem Rev,2016,116(6):3594−3657.  doi: 10.1021/acs.chemrev.5b00462

    2. [2]

      JIA Q, CALDWELL K, STRICKLAND K, ZIEGELBAUER J M, LIU Z, YU Z, RAMAKER D E, MUKERJEE S. Improved oxygen reduction activity and durability of dealloyed PtCox catalysts for proton exchange membrane fuel cells: Strain, ligand, and particle size effects[J]. ACS Catal,2015,5(1):176−186.  doi: 10.1021/cs501537n

    3. [3]

      YU Y, YANG W, SUN X, ZHU W, LI X, SELLMYER D J, SUN S. Monodisperse MPt (M = Fe, Co, Ni, Cu, Zn) nanoparticles prepared from a facile oleylamine reduction of metal salts[J]. Nano Lett,2014,14(5):2778−2782.  doi: 10.1021/nl500776e

    4. [4]

      ANTOLINI E, SALGADO JRC, GIZ M J, GONZALEZ E R. Effects of geometric and electronic factors on ORR activity of carbon supported Pt-Co electrocatalysts in PEM fuel cells[J]. Int J Hydrogen Energy,2005,30(11):1213−1220.  doi: 10.1016/j.ijhydene.2005.05.001

    5. [5]

      LI Q, WU L, WU G, SU D, LV H, ZHANG S, ZHU W, CASIMMR A, ZHU H, GARCIA A M, SUN S. New approach to fully ordered fct-FePt nanoparticles for much enhanced electrocatalysis in acid[J]. Nano Lett,2015,15(4):2468−2473.  doi: 10.1021/acs.nanolett.5b00320

    6. [6]

      LI J, SHARMA S, LIU X, PAN Y, SPENDELOW J S, CHI M, JIA Y, ZHANG P, CULLEN D A, XI Z, LIN H, YIN Z, SHEN B, MUZZIO M, YU C, KIM Y S, PETERSON A A, MORE K L, SUN S. Hard-magnet L10-CoPt nanoparticles advance fuel cell catalysis[J]. Joule,2019,3(1):124−135.  doi: 10.1016/j.joule.2018.09.016

    7. [7]

      WANG D, XIN H L, HOVDEN R, WANG H, YU Y, MULLER D A, DISALVO F J, ABRUNA H D. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts[J]. Nat Mater,2013,12(1):81−87.  doi: 10.1038/nmat3458

    8. [8]

      ZHANG B, FU G, LI Y, LIANG L, GRUNDISH N S, TANG Y, GOODENOUGH J B, CUI Z. General strategy for synthesis of ordered Pt3M intermetallics with ultrasmall particle size[J]. Angew Chem Int Ed Eng,2020,59(20):7857−7863.  doi: 10.1002/anie.201916260

    9. [9]

      LÜ Ying-rong, SUN Wei-yan, WANG Feng. Highly active PtCo-CNT@TiO2 composite nanoanode catalyst for direct methanol fuel cells[J]. J Fuel Chem Technol,2019,47(12):1522−1528.  doi: 10.3969/j.issn.0253-2409.2019.12.012

    10. [10]

      ZHAO Hai-dong, LU Zhen, LIU Rui, Li Zuo-peng, Guo yong. Preparation of platinum-silver alloy nanoparticles and their catalytic performance in methanol electro-oxidation[J]. J Fuel Chem Technol,2020,48(8):1015−1024.  doi: 10.3969/j.issn.0253-2409.2020.08.014

    11. [11]

      YANG Gai-xiu, WANG Ke-xin, ZHANG Ze-zhen, ZHEN Feng, SUN Yong-ming. Preparation of MnO2 catalyst by electrochemical deposition and its application in the microbial fuel cells[J]. J Fuel Chem Technol,2020,48(7):889−896.  doi: 10.3969/j.issn.0253-2409.2020.07.015

    12. [12]

      GUO S, ZHANG S, SUN S. Tuning nanoparticle catalysis for the oxygen reduction reaction[J]. Angew Chem Int Ed Eng,2013,52(33):8526−8544.  doi: 10.1002/anie.201207186

    13. [13]

      CHOI D S, ROBERTSON A W, WARNER J H, KIM S Q, KIM H. Low-temperature chemical vapor deposition synthesis of Pt-Co alloyed nanoparticles with enhanced oxygen reduction reaction catalysis[J]. Adv Mater Weinheim,2016,28(33):7115−7122.  doi: 10.1002/adma.201600469

    14. [14]

      JUNG W S, POPOV B N. New method to synthesize highly active and durable chemically ordered fct-PtCo cathode catalyst for PEMFCs[J]. ACS Appl Mater Interfaces,2017,9(28):23679−23686.  doi: 10.1021/acsami.7b04750

    15. [15]

      WANG C, MARKOVIC N M, STAMENKOVIC V R. Advanced platinum alloy electrocatalysts for the oxygen reduction reaction[J]. ACS Catal,2012,2(5):891−898.  doi: 10.1021/cs3000792

    16. [16]

      XIA B Y, WU H B, LI N, YAN Y, LOU X W, WANG X. One-pot synthesis of Pt-Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties[J]. Angew Chem,2015,127(12):3868−3872.  doi: 10.1002/ange.201411544

    17. [17]

      KNUPP S L, LI W, PASCHOS O, MURRAY T M, SNYDER J, HALDAR P. The effect of experimental parameters on the synthesis of carbon nanotube/nanofiber supported platinum by polyol processing techniques[J]. Carbon,2008,46(10):1276−1284.  doi: 10.1016/j.carbon.2008.05.007

    18. [18]

      LOUKRAKPAM R, LUO J, HE T, CHEN Y, XU Z, NJOKI P N, WANJALA B N, FANG B, MOTT D, YIN J, KLAR J, POWELL B, ZHONG C. Nanoengineered PtCo and PtNi catalysts for oxygen reduction reaction: An assessment of the structural and electrocatalytic properties[J]. J Phys Chem C,2011,115(5):1682−1694.  doi: 10.1021/jp109630n

    19. [19]

      SCHMIES H, HORNBERGER E, ANKE B, JURZINSKY T, NONG H N, DIONIGI F, KUHL S, DRNEC J, LERCH M, CREMERS C, STRASSER P. Impact of carbon support functionalization on the electrochemical stability of Pt fuel cell catalysts[J]. Chem Mater,2018,30(20):7287−7295.  doi: 10.1021/acs.chemmater.8b03612

    20. [20]

      CAI Y, GAO P, WANG F, ZHU H. Carbon supported chemically ordered nanoparicles with stable Pt shell and their superior catalysis toward the oxygen reduction reaction[J]. Electrochimica Acta,2017,245:924−933.  doi: 10.1016/j.electacta.2017.04.173

    21. [21]

      WEI C, RAO R R, PENG J, HUANG B, STEPHENS I E L, RISCH M, XU Z J, HORN Y S. Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells[J]. Adv Mater Weinheim,2019,31(31):e1806296.  doi: 10.1002/adma.201806296

    22. [22]

      BAHN S R, JACOBSEN K W. An object-oriented scripting interface to a legacy electronic structure code[J]. Comput Sci Eng,2002,4(3):56−66.  doi: 10.1109/5992.998641

    23. [23]

      HAMMER B, HANSEN L B, NøRSKOV J K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals[J]. Phys Rev B,1999,59(11):7413−7421.  doi: 10.1103/PhysRevB.59.7413

    24. [24]

      SETHURAMAN V A, VAIRAVAPANDIAN D, LAFOURESSE M C, MAARK T A, KARAN N, SUN S, BERTOCCI U, PETERSON A A, STAFFORD G R, GUDURU P R. Role of elastic strain on electrocatalysis of oxygen reduction reaction on Pt[J]. J Phys Chem C,2015,119(33):19042−19052.  doi: 10.1021/acs.jpcc.5b06096

    25. [25]

      FROST K, KAMINSKI D, KIRWAN G, LASCARIS E, SHANKS R. Crystallinity and structure of starch using wide angle X-ray scattering[J]. Carbohydrate Polymers,2009,78(3):543−548.  doi: 10.1016/j.carbpol.2009.05.018

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    4. [4]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    5. [5]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    6. [6]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    7. [7]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    8. [8]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    9. [9]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    10. [10]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    11. [11]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    12. [12]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    13. [13]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

    14. [14]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    15. [15]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    16. [16]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    17. [17]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    18. [18]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    19. [19]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    20. [20]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

Metrics
  • PDF Downloads(0)
  • Abstract views(761)
  • HTML views(247)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return