Citation: Ying-jian SONG, Xiao-jing CUI, Tian-sheng DENG, Zhang-feng QIN, Wei-bin FAN. Solvent effect on the activity of Ru-Co3O4 catalyst for liquid-phase hydrogenation of CO2 into methane[J]. Journal of Fuel Chemistry and Technology, ;2021, 49(2): 178-185. doi: 10.1016/S1872-5813(21)60013-0 shu

Solvent effect on the activity of Ru-Co3O4 catalyst for liquid-phase hydrogenation of CO2 into methane

Figures(7)

  • Ru-Co3O4 catalyst was prepared by the co-precipitation method. Its catalytic performance in liquid-phase hydrogenation of CO2into methane was investigated, and compared with those of the conventional Ru-based catalysts (Ru/SiO2, Ru/CeO2, Ru/ZrO2, Ru/TiO2) prepared by impregnation method. The solvents including H2O, n-butanol, 1,4-butyrolactone, DMF, n-nonane, decalin, cyclohexane and isooctane had significant solvent effects on the catalytic performance. Compared with other solvents, the catalyst showed higher activity and selectivity catalytic performance when decalin and isooctane was applied as the solvent. At 200 °C and H2/CO2=3:1 (v/v, 4 MPa) and with decalin as the solvent, the conversion of CO2 and the selectivity of CH4reached 45.6% and 97%, respectively. The isotope labeling experiments and in-situ diffuse reflectance infrared spectra showed that the hydrogen atoms of the tertiary carbon in decalin and isooctane were active for CO2 hydrogenation reaction, thus improving the catalytic activity.
  • 加载中
    1. [1]

      DRESSELHAUS M S, THOMAS I L. Alternative energy technologies[J]. Nature,2001,414(6861):332−337.  doi: 10.1038/35104599

    2. [2]

      SAKAKURA T, CHOI J-C, YASUDA H. Transformation of carbon dioxide[J]. Chem Rev,2007,107(6):2365−2387.  doi: 10.1021/cr068357u

    3. [3]

      GOEPPERT A, CZAUN M, JONES J-P, PRAKASH G K S, OLAH G A. Recycling of carbon dioxide to methanol and derived products-closing the loop[J]. Chem Soc Rev,2014,43(23):7995−8048.  doi: 10.1039/C4CS00122B

    4. [4]

      POROSOFF M D, YAN B, CHEN J G. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: Challenges and opportunities[J]. Energy Environ Sci,2016,9(1):62−73.

    5. [5]

      KONDRATENKO E V, MUL G, BALTRUSAITIS J, LARRAZABAL G O, PEREZ-RAMIREZ J. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes[J]. Energy Environ Sci,2013,6(11):3112−3135.

    6. [6]

      HAVRAN V, DUDUKOVIC M P, LO C S. Conversion of methane and carbon dioxide to higher value products[J]. Ind Eng Chem Res,2011,50(12):7089−7100.

    7. [7]

      OLAJIRE A A. Recent progress on the nanoparticles-assisted greenhouse carbon dioxide conversion processes[J]. J CO2 Util,2018,24:522−547.  doi: 10.1016/j.jcou.2018.02.012

    8. [8]

      BERTINI F, GLATZ M, GORGAS N, STOEGER B, PERUZZINI M, VEIROS L F, KIRCHNER K, GONSALVI L. Carbon dioxide hydrogenation catalysed by well-defined Mn(I) PNP pincer hydride complexes[J]. Chem Sci,2017,8(7):5024−5029.  doi: 10.1039/C7SC00209B

    9. [9]

      GUNASEKAR G, PARK K, JEONG H, JUNG K-D, PARK K, YOON S. Molecular Rh(III) and Ir(III) catalysts immobilized on bipyridine-based covalent triazine frameworks for the hydrogenation of CO2 to formate[J]. Catalysts,2018,8(7):295.  doi: 10.3390/catal8070295

    10. [10]

      SORDAKIS K, TSURUSAKI A, IGUCHI M, KAWANAMI H, HIMEDA Y, LAURENCZY G. Carbon dioxide to methanol: the aqueous catalytic way at room temperature[J]. Chem-Eur J,2016,22(44):15605−15608.  doi: 10.1002/chem.201603407

    11. [11]

      DORNER R W, HARDY D R, WILLIAMS F W, DAVIS B H, WILLAUER H D. Influence of gas feed composition and pressure on the catalytic conversion of CO2 to hydrocarbons using a traditional cobalt-based Fischer-Tropsch catalyst[J]. Energy Fuels,2009,23(8):4190−4195.  doi: 10.1021/ef900275m

    12. [12]

      VARGHESE J J, MUSHRIF S H. Origins of complex solvent effects on chemical reactivity and computational tools to investigate them: a review[J]. React Chem Eng,2019,4(2):165−206.  doi: 10.1039/C8RE00226F

    13. [13]

      HE Z, QIAN Q, MA J, MENG Q, ZHOU H, SONG J. Water-enhanced synthesis of higher alcohols from CO2 hydrogenation over a Pt/Co3O4 catalyst under milder conditions[J]. Angew Chem Int Ed,2016,55(2):737−741.  doi: 10.1002/anie.201507585

    14. [14]

      FILONENKO G A, VRIJBURG W L, HENSEN E J M, PIDKO E A. On the activity of supported Au catalysts in the liquid phase hydrogenation of CO2 to formates[J]. J Catal,2016,343:97−105.  doi: 10.1016/j.jcat.2015.10.002

    15. [15]

      CHENG S, ZENG Y, PEI Y, FAN K, QIAO M, ZONG B. Synthesis and catalysis of Pt/W-s-SBA-15 catalysts with short channel for glycerol hydrogenolysis to 1, 3-propanediol[J]. Acta Chim Sin,2019,77(10):1054−1062.  doi: 10.6023/A19060219

    16. [16]

      NIE R, LIANG D, SHEN L, GAO J, CHEN P, HOU Z. Selective oxidation of glycerol with oxygen in base-free solution over MWCNTs supported PtSb alloy nanoparticles[J]. Appl Catal B: Environ,2012,127(30):212−220.  doi: 10.1016/j.apcatb.2012.08.026

    17. [17]

      CHARY K V R, NARESH D, VISHWANATHAN V, SADAKANE M, UEDA W. Vapour phase hydrogenation of phenol over Pd/C catalysts: A relationship between dispersion, metal area and hydrogenation activity[J]. Catal Commun,2007,8(3):471−477.  doi: 10.1016/j.catcom.2006.07.017

    18. [18]

      SALAVATI-NIASARI M, DAVAR F, MAZAHERI M, SHATERIAN M. Preparation of cobalt nanoparticles from [bis(salicylidene)cobalt(II)]–oleylamine complex by thermal decomposition[J]. J Magn Magn Mater,2008,320(3/4):575−578.

    19. [19]

      SHEN X, GARCES L-J, DING Y, LAUBERNDS K, ZERGER R P, AINDOW M, NETH E J, SUIB S L. Behavior of H2 chemisorption on Ru/TiO2 surface and its application in evaluation of Ru particle sizes compared with TEM and XRD analyses[J]. Appl Catal A: Gen,2008,335(2):187−195.  doi: 10.1016/j.apcata.2007.11.017

    20. [20]

      BERTERO N M, APESTEGUÍA C R, MARCHI A J. Catalytic and kinetic study of the liquid-phase hydrogenation of acetophenone over Cu/SiO2 catalyst[J]. Appl Catal A: Gen,2008,349(1/2):100−109.  doi: 10.1016/j.apcata.2008.07.014

    21. [21]

      LIU X, ZHOU W, YANG Y, CHENG K, KANG J. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates[J]. Chem Sci,2018,9(20):4708−4718.  doi: 10.1039/C8SC01597J

    22. [22]

      PRICE G L. Matrix Method for correction of mass spectra in deuterium-exchange applications[J]. Ind Eng Chem Res,1989,28(6):839−844.  doi: 10.1021/ie00090a028

    23. [23]

      DAS T, DEO G. Synthesis, characterization and in situ DRIFTS during the CO2 hydrogenation reaction over supported cobalt catalysts[J]. J Mol Catal A: Chem,2011,350(1/2):75−82.  doi: 10.1016/j.molcata.2011.09.008

    24. [24]

      HONG J, MARCEAU E, KHODAKOV A Y, GABEROVA L, GRIBOVAL-CONSTANT A, GIRARDON J-S, LA FONTAINE C, BRIOIS V. Speciation of ruthenium as a reduction promoter of silica-supported Co catalysts: A time-resolved in situ XAS investigation[J]. ACS Catal,2015,5(2):1273−1282.  doi: 10.1021/cs501799p

    25. [25]

      BUSCA G, LORENZELLI V. Infrared spectroscopic identification of species arising from reactive adsorption of carbon oxides on metal-oxide surfaces[J]. Mater Chem,1982,7(1):89−126.  doi: 10.1016/0390-6035(82)90059-1

  • 加载中
    1. [1]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    2. [2]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    3. [3]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    4. [4]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    5. [5]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    6. [6]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    7. [7]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    8. [8]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    9. [9]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    10. [10]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    11. [11]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    12. [12]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    13. [13]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    14. [14]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    15. [15]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    16. [16]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    17. [17]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    18. [18]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    19. [19]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    20. [20]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

Metrics
  • PDF Downloads(22)
  • Abstract views(3048)
  • HTML views(452)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return