Citation: Deng-pan LÜ, Yong-hui BAI, Jiao-fei WANG, Xu-dong SONG, Wei-guang SU, Guang-suo YU, he ZHU, Guang-jun TANG. Structural features and combustion reactivity of residual carbon in fine slag from entrained-flow gasification[J]. Journal of Fuel Chemistry and Technology, ;2021, 49(2): 129-136. doi: 10.1016/S1872-5813(21)60011-7 shu

Structural features and combustion reactivity of residual carbon in fine slag from entrained-flow gasification

  • Corresponding author: Yong-hui BAI, yhbai@nxu.edu.cn
  • Received Date: 24 September 2020
    Revised Date: 10 November 2020

Figures(6)

  • The carbon content in fine slag during entrained-flow gasification is very high, at present, most of the fine slag was disposed by landfill. It is expected to provide a favorable technology by adding the fine slag to the circulating fluidized bed boilers to participate in combustion reaction. In this study, the gasification fine slags generated from GE, OMB and GSP gasifier, which are typical gasification processes in Ningdong energy and chemical base, was selected for investigation. The structural features and combustion reactivity of the residual carbon in the gasification fine slag were systematically studied by physical adsorption apparatus, laser Raman spectrum and thermogravimetric analyzer. The results showed that the materials in the original gasification fine slag could be divided into cohesive spherical particles, porous irregular particles and isolated large spherical particles, while the acid-washed gasification fine slag was mostly composed of loose fine particles and porous irregular massive particles. Additionally, the particle size of the residual carbon was clustered to 4–8 nm, and the specific surface area and active sites of that decreased orderly as follows: GE>OMB>GSP. The order degree of the residual carbon structure in GE slag was the lowest, and the amorphous carbon structure in it was the highest, while the case in GSP was the opposite. The combustion rate of the residual carbon in GE slag was the fastest, mainly due to its large specific surface area, more amorphous carbon structure and active site, and the comprehensive combustion index of residual carbon in GE slag was 5.26×10−7%2/(min2·oC 3).
  • 加载中
    1. [1]

      ZHANG Lin-min, WANG Jiao-fei, BAI Yong-hui, SU Wei-guang, SONG Xu-dong, YU Guang-suo. In-situ study of Ningdong char particles gasification characteristics on the interface of ash layer and slag[J]. J Fuel Chem Technol,2020,48(2):129−136.  doi: 10.3969/j.issn.0253-2409.2020.02.001

    2. [2]

      WU T, GONG M, LESTER E, WANG F, ZHOU Z, YU Z. Characterisation of residual carbon from entrained-bed coal water slurry gasifiers[J]. Fuel,2007,86(7/8):972−982.  doi: 10.1016/j.fuel.2006.09.033

    3. [3]

      YANG Shuai, SHI Li-jun. Composition analysis of the fine slag from coal gasification and its comprehensive utilization[J]. Coal Chem Ind,2013,41(4):29−31.  doi: 10.3969/j.issn.1005-9598.2013.04.009

    4. [4]

      GUO, F, MIAO Z, GUO Z, LI J, ZHANG Y, WU J. Properties of flotation residual carbon from gasification fine slag[J]. Fuel,2020,267:117043.  doi: 10.1016/j.fuel.2020.117043

    5. [5]

      DU Jie, DAI Gao-feng, LI Shuai-shuai, WANG Xue-bin, SUN Xiao-wei, TAN Hou-zhang. Experimental study on the fundamental combustion characteristics of fine slag from gasification[J]. Clean Coal Technol,2019,25(2):83−88.

    6. [6]

      WU S, HUANG S, JI L, WU Y, GAO J. Structure characteristics and gasification activity of residual carbon from entrained-flow coal gasification slag[J]. Fuel,2014,122:67−75.  doi: 10.1016/j.fuel.2014.01.011

    7. [7]

      ZHAO X, ZENG C, MAO Y, LI W, PENG Y, WANG T, EITENEER B, ZAMANSKY V, FLETCHER T. The surface characteristics and reactivity of residual carbon in coal gasification slag[J]. Energy Fuels,2010,24(1):91−94.  doi: 10.1021/ef9005065

    8. [8]

      XU S, ZHOU Z, GAO X, YU G, GONG X. The gasification reactivity of unburned carbon present in gasification slag from entrained-flow gasifier[J]. Fuel Process Technol,2009,90(9):1062−1070.  doi: 10.1016/j.fuproc.2009.04.006

    9. [9]

      HUANG S, WU S, WU Y, GAO J. Structure characteristics and gasification activity of residual carbon from updraft fixed-bed biomass gasification ash[J]. Energy Conver Manage,2017,136:108−118.  doi: 10.1016/j.enconman.2016.12.091

    10. [10]

      LUO hai-hua. Experimental research on combustion characteristics of fly ash residual carbon of CFB boiler[D]. Wuhan: Huazhong University of Science and Technology, 2007.

    11. [11]

      DAI G, ZHENG S, WANG X, BAI Y, DONG Y, DU J, SUN X, TAN H. Combustibility analysis of high-carbon fine slags from an entrained flow gasifier[J]. J Environ Manage,2020,271:111009.  doi: 10.1016/j.jenvman.2020.111009

    12. [12]

      ZHANG X, BAI Y, WEI J, SONG X, WANG J, YAO M, YU G. Study on char-ash-slag-liquid transition and its effect on char reactivity[J]. Energy Fuels,2020,34(03):3941−3951.  doi: 10.1021/acs.energyfuels.9b03155

    13. [13]

      ZHANG L, WANG J, SONG X, BAI Y, YAO M, YU G. Influence of biomass ash additive on fusion characteristics of high-silicon-aluminum coal ash[J]. Fuel,2020,282:118876.  doi: 10.1016/j.fuel.2020.118876

    14. [14]

      SHUAI Hang, YI Hong-feng, YAUN Hu-die, CHEN Jin-xue. phase composition evolution and viscosity-temperature characteristics of gasification slags at High-temperature[J]. Coal Convers,2015,38(3):44−48.  doi: 10.3969/j.issn.1004-4248.2015.03.010

    15. [15]

      ZHANG Xin-sha, SONG Xu-dong, SU Wei-guang, WEI Jun-tao, BAI Yong-hui, YU Guang-suo. In-situ study on gasification reaction characteristics of Ningdong coal chars with CO2[J]. J Fuel Chem Technol,2019,47(4):385−392.  doi: 10.1016/S1872-5813(19)30018-0

    16. [16]

      ZHAO Yong-bin, WU Hai-jun, ZHANG Xue-bin, LIU Hong-gang, JING Yun-huan, YUAN Wei. Fabrication of porous ceramic from coal gasification residual[J]. Clean Coal Technol,2016,22(5):7−11.

    17. [17]

      SONG Rui-ling, LI Jing, FU Liang-liang, XU Yi, LAN Tian. Characteristics of slags generated from multi-nozzle opposed coal-water slurry gasifier[J]. Clean Coal Technol,2018,24(5):43−49.

    18. [18]

      SHENG C. Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity[J]. Fuel,2007,86(15):2316−2324.  doi: 10.1016/j.fuel.2007.01.029

    19. [19]

      JAWHARI T, ROID A, CASADO J. Raman spectroscopic characterization of some commercially available carbon black materials[J]. Carbon,1995,33(11):1561−1565.  doi: 10.1016/0008-6223(95)00117-V

    20. [20]

      DIPPEL B, JANDER H, HEINTZENBERG J. NIR FT Raman spectroscopic study of flame soot[J]. Phys Chem Chem Phys,1999,1:4707−12.  doi: 10.1039/a904529e

    21. [21]

      SFORNA M C, ZUILEN M A V, PHILIPPOT P. Structural characterization by Raman hyperspectral mapping of organic carbon in the 3.46 billion-year-old Apex chert, Western Australia[J]. Geochim Cosmochim Acta,2014,124(1):18−33.

    22. [22]

      WU J, WANG B, CHENG F. Thermal and kinetic characteristics of combustion of coal sludge[J]. J Therm Anal Calorim,2017,129(3):1899−1909.  doi: 10.1007/s10973-017-6341-1

    23. [23]

      WANG X, LI S, ADEOSUN A, LI Y, VUJANOVIC M, TAN H, DUIC N. Effect of potassium-doping and oxygen concentration on soot oxidation in O2/CO2 atmosphere: A kinetics study by thermogravimetric analysis[J]. Energy Conver Manage,2017,149:686−697.  doi: 10.1016/j.enconman.2017.01.003

    24. [24]

      ZHOU Jun, ZHANG Hai, LV Jun-fu. Study on combustion characteristics of petroleum coke at different heating rates by using thermogravimetry[J]. Coal Convers,2006,29(2):39−43.  doi: 10.3969/j.issn.1004-4248.2006.02.010

  • 加载中
    1. [1]

      Nan Wu Hang Zhang Lingling Wei Quan Gu Haoquan Zheng Weiqiang Zhang Rui Cao . Cyanide: Poison or Treasure?. University Chemistry, 2025, 40(7): 177-188. doi: 10.12461/PKU.DXHX202409072

    2. [2]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    3. [3]

      Yuan Chun Yongmei Liu Fuping Tian Hong Yuan Shu'e Song Wanchun Zhu Yunchao Li Zhongyun Wu Xiaokui Wang Yunshan Bai Li Wang Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Colloidal and Surface Chemical Properties, Molecular Structure and Properties. University Chemistry, 2025, 40(5): 178-188. doi: 10.12461/PKU.DXHX202503053

    4. [4]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    5. [5]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    6. [6]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    7. [7]

      Shu'e Song Xiaokui Wang Yongmei Liu Wanchun Zhu Hong Yuan Fuping Tian Yunshan Bai Yunchao Li Li Wang Zhongyun Wu Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Viscosity, Density and Optical Properties. University Chemistry, 2025, 40(5): 148-156. doi: 10.12461/PKU.DXHX202503026

    8. [8]

      Fuping Tian Yunshan Bai Wanchun Zhu Yufeng Li Yongmei Liu Shu'e Song Hong Yuan Zhongyun Wu Li Wang Xiaokui Wang Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Thermal Properties. University Chemistry, 2025, 40(5): 157-164. doi: 10.12461/PKU.DXHX202503054

    9. [9]

      Yunchao Li Hong Yuan Yuan Chun Xiaokui Wang Fuping Tian Yunshan Bai Yongmei Liu Wanchun Zhu Shu'e Song Zhongyun Wu Li Wang Yufeng Li Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Electrical Properties. University Chemistry, 2025, 40(5): 165-177. doi: 10.12461/PKU.DXHX202503055

    10. [10]

      Houzhen Xiao Mingyu Wang Yong Liu Bangsheng Lao Lingbin Lu Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011

    11. [11]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    12. [12]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    13. [13]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    14. [14]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    15. [15]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    16. [16]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    17. [17]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    18. [18]

      Qilin YUYifei XUPengjun ZHANGShuwei HAOChongqiang ZHUChunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418

    19. [19]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    20. [20]

      Xiaohang JINQi LIUJianping LANG . Room‑temperature solid‑state synthesis, structure, and third‑order nonlinear optical properties of phosphine‑ligand‑protected silver thiolate clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1505-1512. doi: 10.11862/CJIC.20250125

Metrics
  • PDF Downloads(33)
  • Abstract views(3392)
  • HTML views(720)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return