Citation: Doaa S. EL-DESOUKI, Amina H. IBRAHIM, Samira M. ABDELAZIM, Noha A. K. ABOUL-GHEIT, Dalia R. ABDEL-HAFIZAR. The optimum conditions for methanol conversion to dimethyl ether over modified sulfated zirconia catalysts prepared by different methods[J]. Journal of Fuel Chemistry and Technology, ;2021, 49(1): 63-71. doi: 10.1016/S1872-5813(21)60009-9 shu

The optimum conditions for methanol conversion to dimethyl ether over modified sulfated zirconia catalysts prepared by different methods

  • Corresponding author: Noha A. K. ABOUL-GHEIT, nohakadry3yoa@yahoo.com
  • Received Date: 28 August 2020
    Revised Date: 5 November 2020

Figures(6)

  • Sulfated zirconia (SZ) and two promoted 1%Mn/SZ catalysts which have been prepared via sol gel (Mn/SZ-S) and impregnation (Mn/SZ-I) methods were studied. The morphology of the catalysts was characterized by XRD, BET, NH3-TPD, ICP, SEM and FT-IR analysis. The conversion of methanol to dimethyl ether and hydrocarbons was carried out in the temperature range of 120−300 °C. The Mn/SZ-S showed the highest activity due to the high surface area with suitable acidity. The optimum condition of Mn/SZ-S catalyst was investigated at 200 °C and LHSV of 0.02 h−1 in a time range from 30 to 210 min. It was found that the total conversion decreased from 80.18% to 53.26% at 210 min. The reusability of this catalyst was studied at the optimum condition up till four cycles for 1 h. The characterization of the reused catalyst showed a significant change in the structure and surface acidity due to the blockage of the surface acid sited by carbonaceous materials.
  • 加载中
    1. [1]

      SOLYMAN S M, ABOUL-GHEIT N A K, TAWFIK F M, SADEK M, AHMED H A. Performance of ultrasonic - treated nano-zeolites employed in the preparation of dimethyl ether[J]. Egypt J Pet,2013,22:91−99.  doi: 10.1016/j.ejpe.2012.09.003

    2. [2]

      SOLYMAN S M, ABOUL-GHEIT N A K, SADEK M, TAWFIK F M, AHMED H A. The effect of physical and chemical treatment on nano-zeolite characterization and their performance in dimethyl ether preparation[J]. Egypt J Pet,2015,24:289−297.  doi: 10.1016/j.ejpe.2015.07.007

    3. [3]

      ABOUL-FOTOUH S M K, ALI L I, NAGHMASH M A, ABOUL-GHEIT N A K. Effect of the Si/Al ratio of HZSM-5 zeolite on the production of dimethyl ether before and after ultrasonication[J]. J Fuel Chem Technol,2017,45(5):581−588.  doi: 10.1016/S1872-5813(17)30030-0

    4. [4]

      ABOUL-GHEIT A K, ABOUL-FOTOUH S M, ALI L I, NAGHMASH M A. Ultrasonication of H-MOR zeolite catalysts for dimethylether (DME) production as a clean fuel[J]. J Pet Technol Altern Fuels,2014,5(2):13−25.  doi: 10.5897/JPTAF2014.0101

    5. [5]

      ABOUL-FOTOUH S M, ABOUL-GHEIT N A K, NAGHMASH M A. Dimethylether production on zeolite catalysts activated by Cl, F and/or ultrasonication[J]. J Fuel Chem Technol,2016,44(4):428−436.  doi: 10.1016/S1872-5813(16)30022-6

    6. [6]

      SOLYMAN S M, BETIHA M A. The performance of chemically and physically modified local kaolinite in methanol dehydration to dimethyl ether[J]. Egypt J Pet,2014,23:247−254.  doi: 10.1016/j.ejpe.2014.08.001

    7. [7]

      RADWAN D, SAAD L, MIKHAIL S, SELIM S A. Catalytic evaluation of sulfated zirconia pillared clay in N-hexane transformation[J]. J Appl Sci Res,2009,5(12):2332−2342.

    8. [8]

      IBRAHIM A H, ISMAIL H A S, EL-DESOUKI D S, ABDEL-AZIM S A, ABOUL-GHEIT N A K. Preparation of sulfated zirconia catalyst loaded by copper in “nano-scale: Green application to synthesis of biolubricant[J]. Egypt J Chem,2018,61:503−516.

    9. [9]

      LIU N, WANG X, SHI L, MENG X. Metallic oxide-modified sulfated zirconia: an environment-friendly solid acid catalyst[J]. New J Chem,2019,43(8):3625−3632.  doi: 10.1039/C8NJ04636K

    10. [10]

      FÖTTINGER K, HALWAX E, VINEK H. Deactivation and regeneration of Pt containing sulfated zirconia and sulfated zirconia[J]. Appl Catal A: Gen,2006,301:115−122.  doi: 10.1016/j.apcata.2005.11.024

    11. [11]

      KEDIA A O, ZAIDI H A. Conversion of methanol to hydrocarbons over Ni-ZSM-5 catalyst[J]. Int J Adv Res Sci Eng Technol,2014,3(1):350−356.

    12. [12]

      ABOUL-GHEIT A K, GAD F K, ABDEL-ALEEM G M, EL-DESOUKI D S, ABDEL-HAMID S M, GHONEIM S A, IBRAHIM A H. Pt, Re and Pt-Re incorporation in sulfated zirconia as catalysts for n-pentane isomerization[J]. Egypt J Pet,2014,23:303−314.  doi: 10.1016/j.ejpe.2014.08.006

    13. [13]

      SOYLU G S P, ISIK A B, BOZ I. Dehydroisomerization of n-butane over metal promoted sulfated zirconia[J]. Turkish J Eng Env Sci,2009,33:273−279.

    14. [14]

      HSU C Y, HEIMBUCH C R, ARMES C T, GATES B C. A highly active solid superacid catalyst for n-butane isomerization: a sulfated oxide containing iron, manganese and zirconium[J]. J Chem Soc, Chem Comm,1992:1645−1646.

    15. [15]

      WITOON T, PERMSIRIVANICH T, KANJANASOONTORN N, AKKARAPHATAWORN C, SEUBSAI A, FAUNGNAWAKIJ K, WARAKULWIT C, CHAREONPANICH M, LIMTRAKUL J. Direct synthesis of dimethyl ether from CO2 hydrogenation over Cu-ZnO-ZrO2/SO4 2--ZrO2 hybrid catalysts: Effects of sulfur-to-zirconia ratios[J]. Catal Sci Technol,2015,5:2347−2357.  doi: 10.1039/C4CY01568A

    16. [16]

      SAID A E A A, EL-AAL M A. Effect of different metal sulfate precursors on structural and catalytic performance of zirconia in dehydration of methanol to dimethyl ether[J]. J Fuel Chem Technol,2018,46(1):67−74.  doi: 10.1016/S1872-5813(18)30004-5

    17. [17]

      POPOVA M, SZEGEDI Á, LAZAROVA H, DIMITROV M, KALVACHEV Y, ATANASOVA G, RISTIĆ A, WILDE N, GLÄSER R. Influence of the preparation method of sulfated zirconia nanoparticles for levulinic acid esterification[J]. React Kinet Mech Catal,2017,120:55−67.  doi: 10.1007/s11144-016-1088-4

    18. [18]

      CHEN W H, KO H H, SAKTHIVEL A, HUANG S J, LIU S H, LO A Y, TSAI T C, LIU S B. A solid-state NMR, FT-IR and TPD study on acid properties of sulfated and metal-promoted zirconia: Influence of promoter and sulfation treatment[J]. Catal Today,2006,116:111−120.  doi: 10.1016/j.cattod.2006.01.025

    19. [19]

      SRINIVASAN R, WATKINS T R, HUBBARD C R, DAVIS B H. Sulfated zirconia catalysts. the crystal phases and their transformations[J]. Chem Mater,1995,7:725−730.  doi: 10.1021/cm00052a018

    20. [20]

      SHI G L, YU F, YAN X L, LI R F. Synthesis of tetragonal sulfated zirconia via a novel route for biodiesel production[J]. J Fuel Chem Technol,2017,45(3):311−316.  doi: 10.1016/S1872-5813(17)30019-1

    21. [21]

      SOHN J R, LIM J S. Catalytic properties of NiSO4/ZrO2 promoted with Fe2O3 for acid catalysis[J]. Mater Res Bull,2006,41:1225−1241.  doi: 10.1016/j.materresbull.2006.01.010

    22. [22]

      BENITO H E, ALAMILLA R G, ENRÍQUEZ J M H, DELGADO F P, GUTIÉRREZ D L, GARCÍA P. Porous silicates modified with zirconium oxide and sulfate ions for alcohol dehydration reactions[J]. Adv Mater Sci Eng,2015,2015:1−11.

    23. [23]

      REN K, KONG D, MENG X, WANG X, SHI L, LIU N. The effects of ammonium sulfate and sulfamic acid on the surface acidity of sulfated zirconia[J]. J Saudi Chem Soc,2019,23:198−204.  doi: 10.1016/j.jscs.2018.06.006

    24. [24]

      VLASOV E A, MYAKIN S V, SYCHOV M M, AHO A, POSTNOV A Y, MAL’TSEVA N V, DOLGASHEV A O, OMAROV S O, MURZIN D Y. On synthesis and characterization of sulfated alumina-zirconia catalysts for isobutene alkylation[J]. Catal Lett,2015,145:1651−1659.  doi: 10.1007/s10562-015-1575-7

    25. [25]

      VAHID B R, SAGHATOLESLAMI N, NAYEBZADEH H, MASKOOKI A. Preparation of nano-size Al-promoted sulfated zirconia and the impact of calcination temperature on its catalytic activity[J]. Chem Biochem Eng Q,2012,26(2):71−77.

    26. [26]

      YADAV G D, MURKUTE A D. Preparation of a novel catalyst UDCaT-5: Enhancement in activity of acid-treated zirconia - Effect of treatment with chlorosulfonic acid vis-à-vis sulfuric acid[J]. J Catal,2004,224:218−223.  doi: 10.1016/j.jcat.2004.02.021

    27. [27]

      BENOMAR S, MASSÓ A, SOLSONA B, ISSAADI R, NIETO J L. Vanadium supported on alumina and/or zirconia catalysts for the selective transformation of ethane and methanol[J]. Catalysts,2018,8:126.  doi: 10.3390/catal8040126

    28. [28]

      MA T, IMAI H, YAMAWAKI M, TERASAKA K, LI X. Selective synthesis of gasoline-ranged hydrocarbons from syngas over hybrid catalyst consisting of metal-loaded ZSM-5 coupled with copper-zinc oxide[J]. Catalysts,2014,4:116−128.  doi: 10.3390/catal4020116

    29. [29]

      MORADI G R, YARIPOUR F, VALE-SHEYDA P. Catalytic dehydration of methanol to dimethyl ether over mordenite catalysts[J]. Fuel Process Technol,2010,91:461−468.  doi: 10.1016/j.fuproc.2009.12.005

    30. [30]

      STÖCKER M. Methanol-to-hydrocarbons: Catalytic materials and their behavior[J]. Microporous Mesoporous Mater,1999,29:3−48.  doi: 10.1016/S1387-1811(98)00319-9

    31. [31]

      SOHN J R, LEE D G. Characterization of zirconium sulfate supported on TiO2 and activity for acid catalysis[J]. Korean J Chem Eng,2003,20:1030−1036.  doi: 10.1007/BF02706933

    32. [32]

      TESTA M, LA PAROLA V, MESRAR F, OUANJI F, KACIMI M, ZIYAD M, LIOTTA L. Use of zirconium phosphate-sulphate as acid catalyst for synthesis of glycerol-based fuel additives[J]. Catalysts,2019,9:148.  doi: 10.3390/catal9020148

    33. [33]

      HUSSAIN S T, MAZAR M, GUL S, CHUANG K T, SANGER A R. Dehydration of methanol to dimethyl ether, ethylene and propylene over silica-doped sulfated zirconia[J]. Bull Korean Chem Soc,2006,27(11):1844−1850.  doi: 10.5012/bkcs.2006.27.11.1844

    34. [34]

      PALOMO J, RODRIGUEZ-MIRASOL J, CORDERO T. Methanol dehydration to dimethyl ether on Zr-loaded P-containing mesoporous activated carbon catalysts[J]. Materials,2019,12:2204−2220.  doi: 10.3390/ma12132204

    35. [35]

      GLUKHOVA I O, ASABINA E A, PET’KOV V I, MIRONOVA E Yu, ZHILYAEVA N A, KOVALSKII A M, YAROSLAVTESEV A B. Zirconium d-transition metal phosphates as catalysts for selective dehydration of methanol to dimethyl ether[J]. Inorg Mater,2020,56(4):395−401.  doi: 10.1134/S0020168520040056

  • 加载中
    1. [1]

      Zhi-Yuan YueHua-Kai LiNa WangShan-Shan LiuLe-Ping MiaoHeng-Yun YeChao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355

    2. [2]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    3. [3]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    4. [4]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    5. [5]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    6. [6]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    7. [7]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    8. [8]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    9. [9]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    10. [10]

      Cong GaoZijian ZhuSiwei LiZheng XiQingqing SunJie HanRong Guo . Chiral supramolecular catalysts of helical nanoribbon: More twist, higher enantioselectivity. Chinese Chemical Letters, 2025, 36(3): 109968-. doi: 10.1016/j.cclet.2024.109968

    11. [11]

      Tianli Hui Tao Zheng Xiaoluo Cheng Tonghui Li Rui Zhang Xianghai Meng Haiyan Liu Zhichang Liu Chunming Xu . A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts. Chinese Journal of Structural Chemistry, 2025, 44(3): 100520-100520. doi: 10.1016/j.cjsc.2025.100520

    12. [12]

      Zhixue LiuHaiqi ChenLijuan GuoXinyao SunZhi-Yuan ZhangJunyi ChenMing DongChunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666

    13. [13]

      Hongyuan ShaDongling YangYanran ShangZujian WangRongbing SuChao HeXiaoming YangXifa Long . Trithionic guanidine: A novel semi-organic short-wave ultraviolet nonlinear optical sulfate with dimeric heteroleptic tetrahedra. Chinese Chemical Letters, 2025, 36(4): 109730-. doi: 10.1016/j.cclet.2024.109730

    14. [14]

      Jinshuai ZhengJunfeng NiuCrispin HalsallYadi GuoPeng ZhangLinke Ge . New insights into transformation mechanisms for sulfate and chlorine radical-mediated degradation of sulfonamide and fluoroquinolone antibiotics. Chinese Chemical Letters, 2025, 36(5): 110202-. doi: 10.1016/j.cclet.2024.110202

    15. [15]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    16. [16]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    17. [17]

      Yaxin SunHuiyu LiShiquan GuoCongju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418

    18. [18]

      Dong ChengYouyou FengBingxi FengKe WangGuoxin SongGen WangXiaoli ChengYonghui DengJing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623

    19. [19]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    20. [20]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

Metrics
  • PDF Downloads(3)
  • Abstract views(1121)
  • HTML views(111)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return