The optimum conditions for methanol conversion to dimethyl ether over modified sulfated zirconia catalysts prepared by different methods
- Corresponding author: Noha A. K. ABOUL-GHEIT, nohakadry3yoa@yahoo.com
Citation:
Doaa S. EL-DESOUKI, Amina H. IBRAHIM, Samira M. ABDELAZIM, Noha A. K. ABOUL-GHEIT, Dalia R. ABDEL-HAFIZAR. The optimum conditions for methanol conversion to dimethyl ether over modified sulfated zirconia catalysts prepared by different methods[J]. Journal of Fuel Chemistry and Technology,
;2021, 49(1): 63-71.
doi:
10.1016/S1872-5813(21)60009-9
SOLYMAN S M, ABOUL-GHEIT N A K, TAWFIK F M, SADEK M, AHMED H A. Performance of ultrasonic - treated nano-zeolites employed in the preparation of dimethyl ether[J]. Egypt J Pet,2013,22:91−99.
doi: 10.1016/j.ejpe.2012.09.003
SOLYMAN S M, ABOUL-GHEIT N A K, SADEK M, TAWFIK F M, AHMED H A. The effect of physical and chemical treatment on nano-zeolite characterization and their performance in dimethyl ether preparation[J]. Egypt J Pet,2015,24:289−297.
doi: 10.1016/j.ejpe.2015.07.007
ABOUL-FOTOUH S M K, ALI L I, NAGHMASH M A, ABOUL-GHEIT N A K. Effect of the Si/Al ratio of HZSM-5 zeolite on the production of dimethyl ether before and after ultrasonication[J]. J Fuel Chem Technol,2017,45(5):581−588.
doi: 10.1016/S1872-5813(17)30030-0
ABOUL-GHEIT A K, ABOUL-FOTOUH S M, ALI L I, NAGHMASH M A. Ultrasonication of H-MOR zeolite catalysts for dimethylether (DME) production as a clean fuel[J]. J Pet Technol Altern Fuels,2014,5(2):13−25.
doi: 10.5897/JPTAF2014.0101
ABOUL-FOTOUH S M, ABOUL-GHEIT N A K, NAGHMASH M A. Dimethylether production on zeolite catalysts activated by Cl−, F− and/or ultrasonication[J]. J Fuel Chem Technol,2016,44(4):428−436.
doi: 10.1016/S1872-5813(16)30022-6
SOLYMAN S M, BETIHA M A. The performance of chemically and physically modified local kaolinite in methanol dehydration to dimethyl ether[J]. Egypt J Pet,2014,23:247−254.
doi: 10.1016/j.ejpe.2014.08.001
RADWAN D, SAAD L, MIKHAIL S, SELIM S A. Catalytic evaluation of sulfated zirconia pillared clay in N-hexane transformation[J]. J Appl Sci Res,2009,5(12):2332−2342.
IBRAHIM A H, ISMAIL H A S, EL-DESOUKI D S, ABDEL-AZIM S A, ABOUL-GHEIT N A K. Preparation of sulfated zirconia catalyst loaded by copper in “nano-scale: Green application to synthesis of biolubricant[J]. Egypt J Chem,2018,61:503−516.
LIU N, WANG X, SHI L, MENG X. Metallic oxide-modified sulfated zirconia: an environment-friendly solid acid catalyst[J]. New J Chem,2019,43(8):3625−3632.
doi: 10.1039/C8NJ04636K
FÖTTINGER K, HALWAX E, VINEK H. Deactivation and regeneration of Pt containing sulfated zirconia and sulfated zirconia[J]. Appl Catal A: Gen,2006,301:115−122.
doi: 10.1016/j.apcata.2005.11.024
KEDIA A O, ZAIDI H A. Conversion of methanol to hydrocarbons over Ni-ZSM-5 catalyst[J]. Int J Adv Res Sci Eng Technol,2014,3(1):350−356.
ABOUL-GHEIT A K, GAD F K, ABDEL-ALEEM G M, EL-DESOUKI D S, ABDEL-HAMID S M, GHONEIM S A, IBRAHIM A H. Pt, Re and Pt-Re incorporation in sulfated zirconia as catalysts for n-pentane isomerization[J]. Egypt J Pet,2014,23:303−314.
doi: 10.1016/j.ejpe.2014.08.006
SOYLU G S P, ISIK A B, BOZ I. Dehydroisomerization of n-butane over metal promoted sulfated zirconia[J]. Turkish J Eng Env Sci,2009,33:273−279.
HSU C Y, HEIMBUCH C R, ARMES C T, GATES B C. A highly active solid superacid catalyst for n-butane isomerization: a sulfated oxide containing iron, manganese and zirconium[J]. J Chem Soc, Chem Comm,1992:1645−1646.
WITOON T, PERMSIRIVANICH T, KANJANASOONTORN N, AKKARAPHATAWORN C, SEUBSAI A, FAUNGNAWAKIJ K, WARAKULWIT C, CHAREONPANICH M, LIMTRAKUL J. Direct synthesis of dimethyl ether from CO2 hydrogenation over Cu-ZnO-ZrO2/SO4 2--ZrO2 hybrid catalysts: Effects of sulfur-to-zirconia ratios[J]. Catal Sci Technol,2015,5:2347−2357.
doi: 10.1039/C4CY01568A
SAID A E A A, EL-AAL M A. Effect of different metal sulfate precursors on structural and catalytic performance of zirconia in dehydration of methanol to dimethyl ether[J]. J Fuel Chem Technol,2018,46(1):67−74.
doi: 10.1016/S1872-5813(18)30004-5
POPOVA M, SZEGEDI Á, LAZAROVA H, DIMITROV M, KALVACHEV Y, ATANASOVA G, RISTIĆ A, WILDE N, GLÄSER R. Influence of the preparation method of sulfated zirconia nanoparticles for levulinic acid esterification[J]. React Kinet Mech Catal,2017,120:55−67.
doi: 10.1007/s11144-016-1088-4
CHEN W H, KO H H, SAKTHIVEL A, HUANG S J, LIU S H, LO A Y, TSAI T C, LIU S B. A solid-state NMR, FT-IR and TPD study on acid properties of sulfated and metal-promoted zirconia: Influence of promoter and sulfation treatment[J]. Catal Today,2006,116:111−120.
doi: 10.1016/j.cattod.2006.01.025
SRINIVASAN R, WATKINS T R, HUBBARD C R, DAVIS B H. Sulfated zirconia catalysts. the crystal phases and their transformations[J]. Chem Mater,1995,7:725−730.
doi: 10.1021/cm00052a018
SHI G L, YU F, YAN X L, LI R F. Synthesis of tetragonal sulfated zirconia via a novel route for biodiesel production[J]. J Fuel Chem Technol,2017,45(3):311−316.
doi: 10.1016/S1872-5813(17)30019-1
SOHN J R, LIM J S. Catalytic properties of NiSO4/ZrO2 promoted with Fe2O3 for acid catalysis[J]. Mater Res Bull,2006,41:1225−1241.
doi: 10.1016/j.materresbull.2006.01.010
BENITO H E, ALAMILLA R G, ENRÍQUEZ J M H, DELGADO F P, GUTIÉRREZ D L, GARCÍA P. Porous silicates modified with zirconium oxide and sulfate ions for alcohol dehydration reactions[J]. Adv Mater Sci Eng,2015,2015:1−11.
REN K, KONG D, MENG X, WANG X, SHI L, LIU N. The effects of ammonium sulfate and sulfamic acid on the surface acidity of sulfated zirconia[J]. J Saudi Chem Soc,2019,23:198−204.
doi: 10.1016/j.jscs.2018.06.006
VLASOV E A, MYAKIN S V, SYCHOV M M, AHO A, POSTNOV A Y, MAL’TSEVA N V, DOLGASHEV A O, OMAROV S O, MURZIN D Y. On synthesis and characterization of sulfated alumina-zirconia catalysts for isobutene alkylation[J]. Catal Lett,2015,145:1651−1659.
doi: 10.1007/s10562-015-1575-7
VAHID B R, SAGHATOLESLAMI N, NAYEBZADEH H, MASKOOKI A. Preparation of nano-size Al-promoted sulfated zirconia and the impact of calcination temperature on its catalytic activity[J]. Chem Biochem Eng Q,2012,26(2):71−77.
YADAV G D, MURKUTE A D. Preparation of a novel catalyst UDCaT-5: Enhancement in activity of acid-treated zirconia - Effect of treatment with chlorosulfonic acid vis-à-vis sulfuric acid[J]. J Catal,2004,224:218−223.
doi: 10.1016/j.jcat.2004.02.021
BENOMAR S, MASSÓ A, SOLSONA B, ISSAADI R, NIETO J L. Vanadium supported on alumina and/or zirconia catalysts for the selective transformation of ethane and methanol[J]. Catalysts,2018,8:126.
doi: 10.3390/catal8040126
MA T, IMAI H, YAMAWAKI M, TERASAKA K, LI X. Selective synthesis of gasoline-ranged hydrocarbons from syngas over hybrid catalyst consisting of metal-loaded ZSM-5 coupled with copper-zinc oxide[J]. Catalysts,2014,4:116−128.
doi: 10.3390/catal4020116
MORADI G R, YARIPOUR F, VALE-SHEYDA P. Catalytic dehydration of methanol to dimethyl ether over mordenite catalysts[J]. Fuel Process Technol,2010,91:461−468.
doi: 10.1016/j.fuproc.2009.12.005
STÖCKER M. Methanol-to-hydrocarbons: Catalytic materials and their behavior[J]. Microporous Mesoporous Mater,1999,29:3−48.
doi: 10.1016/S1387-1811(98)00319-9
SOHN J R, LEE D G. Characterization of zirconium sulfate supported on TiO2 and activity for acid catalysis[J]. Korean J Chem Eng,2003,20:1030−1036.
doi: 10.1007/BF02706933
TESTA M, LA PAROLA V, MESRAR F, OUANJI F, KACIMI M, ZIYAD M, LIOTTA L. Use of zirconium phosphate-sulphate as acid catalyst for synthesis of glycerol-based fuel additives[J]. Catalysts,2019,9:148.
doi: 10.3390/catal9020148
HUSSAIN S T, MAZAR M, GUL S, CHUANG K T, SANGER A R. Dehydration of methanol to dimethyl ether, ethylene and propylene over silica-doped sulfated zirconia[J]. Bull Korean Chem Soc,2006,27(11):1844−1850.
doi: 10.5012/bkcs.2006.27.11.1844
PALOMO J, RODRIGUEZ-MIRASOL J, CORDERO T. Methanol dehydration to dimethyl ether on Zr-loaded P-containing mesoporous activated carbon catalysts[J]. Materials,2019,12:2204−2220.
doi: 10.3390/ma12132204
GLUKHOVA I O, ASABINA E A, PET’KOV V I, MIRONOVA E Yu, ZHILYAEVA N A, KOVALSKII A M, YAROSLAVTESEV A B. Zirconium d-transition metal phosphates as catalysts for selective dehydration of methanol to dimethyl ether[J]. Inorg Mater,2020,56(4):395−401.
doi: 10.1134/S0020168520040056
Zhi-Yuan Yue , Hua-Kai Li , Na Wang , Shan-Shan Liu , Le-Ping Miao , Heng-Yun Ye , Chao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355
Xue Xin , Qiming Qu , Islam E. Khalil , Yuting Huang , Mo Wei , Jie Chen , Weina Zhang , Fengwei Huo , Wenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Ting Wang , Xin Yu , Yaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320
Hailong He , Wenbing Wang , Wenmin Pang , Chen Zou , Dan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
Cong Gao , Zijian Zhu , Siwei Li , Zheng Xi , Qingqing Sun , Jie Han , Rong Guo . Chiral supramolecular catalysts of helical nanoribbon: More twist, higher enantioselectivity. Chinese Chemical Letters, 2025, 36(3): 109968-. doi: 10.1016/j.cclet.2024.109968
Tianli Hui , Tao Zheng , Xiaoluo Cheng , Tonghui Li , Rui Zhang , Xianghai Meng , Haiyan Liu , Zhichang Liu , Chunming Xu . A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts. Chinese Journal of Structural Chemistry, 2025, 44(3): 100520-100520. doi: 10.1016/j.cjsc.2025.100520
Zhixue Liu , Haiqi Chen , Lijuan Guo , Xinyao Sun , Zhi-Yuan Zhang , Junyi Chen , Ming Dong , Chunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666
Hongyuan Sha , Dongling Yang , Yanran Shang , Zujian Wang , Rongbing Su , Chao He , Xiaoming Yang , Xifa Long . Trithionic guanidine: A novel semi-organic short-wave ultraviolet nonlinear optical sulfate with dimeric heteroleptic tetrahedra. Chinese Chemical Letters, 2025, 36(4): 109730-. doi: 10.1016/j.cclet.2024.109730
Jinshuai Zheng , Junfeng Niu , Crispin Halsall , Yadi Guo , Peng Zhang , Linke Ge . New insights into transformation mechanisms for sulfate and chlorine radical-mediated degradation of sulfonamide and fluoroquinolone antibiotics. Chinese Chemical Letters, 2025, 36(5): 110202-. doi: 10.1016/j.cclet.2024.110202
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Yaxin Sun , Huiyu Li , Shiquan Guo , Congju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418
Dong Cheng , Youyou Feng , Bingxi Feng , Ke Wang , Guoxin Song , Gen Wang , Xiaoli Cheng , Yonghui Deng , Jing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623
Yuchen Guo , Xiangyu Zou , Xueling Wei , Weiwei Bao , Junjun Zhang , Jie Han , Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255