Citation: WEI Ling, ZENG Chun-yang, XIE Hong-juan, WU Ying-quan. Study on the formation of 2-pentanone from ethanol over K-CuZrO2 catalysts[J]. Journal of Fuel Chemistry and Technology, ;2021, 49(1): 80-87. doi: 10.1016/S1872-5813(21)60008-7 shu

Study on the formation of 2-pentanone from ethanol over K-CuZrO2 catalysts

  • Corresponding author: WU Ying-quan, wuyq@sxicc.ac.cn
  • Received Date: 2 September 2020
    Revised Date: 30 September 2020

    Fund Project: The project was supported by Science and Technology Innovation Project of Shanxi Colleges and Universities (2009L1007)

Figures(8)

  • A series of K-CuZrO2 catalysts with different Cu contents were prepared. The catalytic performance and reaction mechanism of 2-pentanone from ethanol condensation were investigated. The structure and properties of the catalysts were studied by N2 sorption, XRD, H2-TPR, CO2-TPD, TEM and XPS. The results showed that when the content of Cu was 9%, the conversion of ethanol reached the maximum (99.5%) due to the strong interaction between CuO and ZrO2 which promoted the reduction of CuO and resulted in the largest specific surface area of Cu on the catalyst surface. The selectivity of 2-pentanone reached the maximum (35.0%) because the strongest basicity related to medium-strength basic sites of the catalyst surface were suitable for the condensation reaction. The formation of 2-pentanone on K-CuZrO2 catalyst was speculated on the basis of the analysis of intermediates: ethanol was dehydrogenated to form acetaldehyde. Then, the acetaldehyde was condensed and decomposed to acetone followed by reaction with acetaldehyde to form 2-pentanone.
  • 加载中
    1. [1]

      CHEN Ming-ming, LIU Wei, CHEN Meng-ci, ZHEN Xue-yun, CHEN Ming. Synthesis of 3,5-dichloro-2-pentanone[J]. Fine Chem Intermed,2015,45(1):36−39.

    2. [2]

      REN Ya-ning, ZhANG Yi, MEN Jing. Synthesis method of 3,5-dichloro-2-pentanone and its application in preparation of drugs[J]. Chem Pharm Eng,2019,40(2):23−30.

    3. [3]

      SUN Yong-jun, LI Shuo, GUO Chun. Improvement on the synthesis of 5-chlorine-2-pentanone[J]. Fine Chem Intermed,2015,45(6):45−47.

    4. [4]

      Deng Guang-jin. Study on the synthesis of aliphatic ketones[D]. Beijing: Beijing Univ Chem Technol, 2001.

    5. [5]

      WANG Q N, WENG X F, ZHOU B C, LV S P, MIAO S, ZHANG D L, HAN Y, SCOTT S L, SCHÜTH F, LU A H. Direct, selective production of aromatic alcohols from ethanol using a tailored bifunctional cobalt-hydroxyapatite catalyst[J]. ACS Catal,2019,9:7204−7216.  doi: 10.1021/acscatal.9b02566

    6. [6]

      WANG Q N, ZHOU B C, WENG X F, LV S P, SCHÜTH F, LU A H. Hydroxyapatite nanowires rich in [Ca-O-P] sites for ethanol direct coupling showing high C6–12 alcohol yield[J]. Chem Commun,2019,55:10420−10423.  doi: 10.1039/C9CC05454E

    7. [7]

      HE D P, DING Y J, CHEN W M, LU Y, LUO H Y. One-step synthesis of 2-pentanone from ethanol over K-Pd/MnOx-ZrO2-ZnO catalyst[J]. J Mol Catal A: Chem,2005,226:89−92.  doi: 10.1016/j.molcata.2004.08.002

    8. [8]

      SUBRAMANIAM S, GUO M F, BATHENA T, GRAY M, ZHANG X, MARTINEZ A, KOVARIK L, GOULAS K A, RAMASAMY K K. Direct catalytic conversion of ethanol to C5+ ketones: Role of PdZn alloy on catalytic activity and stability[J]. Angew Chem Int Ed,2020,59:14550−14557.  doi: 10.1002/anie.202005256

    9. [9]

      LU T, DU Z, LIU J, CHEN C, XU J. Dehydrogenation of primary aliphatic alcohols to aldehydes over Cu-Ni bimetallic catalysts[J]. Chin J Catal,2014,35:1911−1916.  doi: 10.1016/S1872-2067(14)60208-4

    10. [10]

      YAN Meng-xiao, XIAO Yong-shan, SHI Xian-ying, GE Han-qing, LI Ting, SONG Yong-hong, LIU Zhao-tie, LIU Zhong-wen. The gas-phase dehydrogenation of cyclohexanol to cyclohexanone over Cu-SiO2 catalysts[J]. J Shaanxi Normal Univ (Nat Sci Ed),2019,47(1):109−116.

    11. [11]

      LIN Dan-dan, NING Yan-chun, WU Xu, GUO Juan-juan, AN Xia, XIE Xian-mei. Effect of Cu content on the catalytic properties of CuZnAl for gas-phase dehydrogenation of cyclohexanol[J]. J Taiyuan Univ Technol,2017,48(1):25−29.

    12. [12]

      JIANG Guang-shen, HU Yun-feng, CAI Jun, XU Peng, CONG Liang, FANG Fei. Research of Cu-ZnO catalysts for sec-butanol dehydrogenation to methyl ethyl ketone[J]. Chem Ind Eng Progress,2013,32(2):352−358.

    13. [13]

      LV Ting-ting. Synthesis of hydroxybutyl vinyl ether catalyzed by solid base catalyst K/ZrO2[D]. Taiyuan: Shanxi University, 2018.

    14. [14]

      HE Dai-ping, DING Yun-jie, YIN Hong-mei, WANG Tao, ZHU He-jun. Effect of alkali promoters on catalytic performance of MnOx/ZrO2 for synthesis of methanol and isobutanol from syngas[J]. Chin J Catal,2003,24(2):111−114.  doi: 10.3321/j.issn:0253-9837.2003.02.009

    15. [15]

      TAN L, YANG G H, YONEYAMA Y, KOU Y L, TAN Y S, VITIDSANTC T, TSUBAKIA N. Iso-butanol direct synthesis from syngas over the alkali metals modified Cr/ZnO catalysts[J]. Appl Catal A: Gen,2015,505:141−149.  doi: 10.1016/j.apcata.2015.08.002

    16. [16]

      TIAN S P, WANG S C, WU Y Q, GAO J W, WANG P, XIE H J, YANG G H, HAN Y Z, TAN Y S. The role of potassium promoter in isobutanol synthesis over Zn-Cr based catalysts[J]. Catal Sci Technol,2016,6:4105−4115.  doi: 10.1039/C5CY02030A

    17. [17]

      SATO A G, VOLANTI D P, MEIRA D M, DAMYANOVA S, LONGO E, BUENO J M C. Effect of the ZrO2 phase on the structure and behavior of supported Cu catalysts for ethanol conversion[J]. J Catal,2013,307:1−17.  doi: 10.1016/j.jcat.2013.06.022

    18. [18]

      TAN Li, WU Ying-quan, ZHANG Tao, XIE Hong-juan, CHEN Jian-gang. Effect of precipitation temperature on the performance of K-CuLaZrO2 catalyst for isobutanol synthesis from syngas[J]. J Fuel Chem Technol,2019,47(9):1096−1103.

    19. [19]

      WU Y Q, ZHANG J F, ZHANG T, SUN K, WANG L Y, XIE H J, TAN Y S. Effect of potassium on the regulation of C1 intermediates in isobutyl alcohol synthesis from syngas over CuLaZrO2 catalysts[J]. Ind Eng Chem Res,2019,58:9343−9351.  doi: 10.1021/acs.iecr.9b01436

    20. [20]

      HLEIS D, LABAKI M, LAVERSIN H, COURCOT D, ABOUKAIS A. Comparison of alkali-promoted ZrO2 catalysts towards carbon black oxidation[J]. Colloids Surf A,2008,33(2/3):193−200.

    21. [21]

      AGUILA G, VALENZUELA A, GUERRERO S, ARAYA P. WGS activity of a novel Cu-ZrO2 catalyst prepared by a reflux method. Comparison with a conventional impregnation method[J]. Catal Commun,2013,39:82−85.  doi: 10.1016/j.catcom.2013.05.007

    22. [22]

      WU Gui-sheng, REN Jie, SUN Yu-han. The effect of calcinations temperature on the performance of Cu/ZrO2 and Cu-La2O3/ZrO2[J]. Acta Phys -Chim Sin,1999,15(6):564−567.  doi: 10.3866/PKU.WHXB19990616

    23. [23]

      WU Ying-quan, XIE Hong-juan, KOU Yong-li, Tan Li, HAN Yi-zhuo, TAN Yi-sheng. Effect of calcination temperature on performance of K-Cu/Zn/La/ZrO2 for isobutanol synthesis[J]. J Fuel Chem Technol,2013,41(7):868−874.  doi: 10.1016/S1872-5813(13)60036-5

    24. [24]

      WU Ying-quan, WANG Si-chen, XIE Hong-juan, GAO Jun-wen, TIAN Shao-peng, HAN Yi-zhuo, TAN Yi-sheng. Influence of Cu on the K-LaZrO2 catalyst for isobutanol synthesis[J]. Acta Phys-Chim Sin,2015,31(1):166−172.  doi: 10.3866/PKU.WHXB201411241

    25. [25]

      ORDOMSKY V V, SUSHKEVICH V L, IVANOVA I I. Study of acetaldehyde condensation chemistry over magnesia and zirconia supported on silica[J]. J Mol Catal A: Chem,2010,333:85−93.  doi: 10.1016/j.molcata.2010.10.001

    26. [26]

      PRAŠNIKAR A, PAVLIŠIČ A, RUIZ-ZEPEDA F, KOVAČ J, LIKOZAR B. Mechanisms of copper-based catalyst deactivation during CO2 reduction to methanol[J]. Ind Eng Chem Res,2019,58:13021−13029.  doi: 10.1021/acs.iecr.9b01898

  • 加载中
    1. [1]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    2. [2]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    3. [3]

      Siwei Lv Tantian Tan Xinyue Li Siyan Zhang Mingyuan Zhang Minghao Li Hangshuo Guo Zhaorong Li Liangjie Dong Fengshuo Zhang Junlong Zhao . Competition of the “King of Transboundary Medicine”. University Chemistry, 2024, 39(9): 102-108. doi: 10.12461/PKU.DXHX202403034

    4. [4]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    5. [5]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    6. [6]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    7. [7]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    8. [8]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    9. [9]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    10. [10]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    11. [11]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    15. [15]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    16. [16]

      Kangmin WangLiqiu WanJingyu WangChunlin ZhouKe YangLiang ZhouBijin Li . Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, 35(10): 109554-. doi: 10.1016/j.cclet.2024.109554

    17. [17]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    18. [18]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

    19. [19]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

    20. [20]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

Metrics
  • PDF Downloads(5)
  • Abstract views(2279)
  • HTML views(450)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return