Citation: WANG Ying-wen, ZHANG Ya-jing, WANG Kang-jun, TAN Li-mei, CHEN Shu-ying. Preparation of Ni/SiO2 by ammonia evaporation method for synthesis of 2-MTHF from 2-MF hydrogenation[J]. Journal of Fuel Chemistry and Technology, ;2021, 49(1): 97-103. doi: 10.1016/S1872-5813(21)60007-5 shu

Preparation of Ni/SiO2 by ammonia evaporation method for synthesis of 2-MTHF from 2-MF hydrogenation

  • Corresponding author: ZHANG Ya-jing, yjzhang2009@163.com WANG Kang-jun, angle_79@163.com
  • Received Date: 18 February 2020
    Revised Date: 11 November 2020

    Fund Project: The project was supported by National Natural Science Foundation of Liaoning Province (2019-ZD-0077), Liaoning Revitalization Talents Program (XLYC1907029), Science Research Foundation of Education Department of Liaoning Province (LQ2020026, LZ2019003), and Liaoning Innovation Talents Program in University

Figures(8)

  • The Ni/SiO2 catalysts were prepared by ammonia evaporation method, with nickel nitrate as Ni source and silica sol as the SiO2 source, for synthesis of 2-MTHF from 2-MF hydrogenation. The catalytic performance of catalysts prepared at different calcination temperatures were tested on a fixed-bed reactor. XRD, N2 adsorption-desorption, H2-TPR, NH3-TPD, XPS and TG were employed to characterize the structure and surface properties of these catalysts. The effect of calcination temperature on the structure, surface property and catalytic performance of catalysts were investigated. The result indicated that all the catalysts had a phyllosilicate structure after calcination, and maintained the structure after reduction. Ni particles dispersed well with smaller size and strong metal support interaction showed high activity. The surface acidity of catalysts was influenced by the calcination temperature. The maximum catalytic activity and selectivity were obtained on the catalyst calcined by at 500 ℃, which exhibited a 2-MF conversion of 100% and the 2-MTHF selectivity of 93.5% at the optimized condition, due to smaller particle size and suitable surface acidity.
  • 加载中
    1. [1]

      GUO Qing-quan, CHEN Huan-qin. Development on prepartion of levulinic acid and its derivatives[J]. Spec Petrochem,2003,20(3):45−48.  doi: 10.3969/j.issn.1003-9384.2003.03.016

    2. [2]

      RAGAN J A, ENDE D J, BRENEK S J, EISENBEIS S A, SINGER R A, TICKNER D L, TEIXEIRA J J, VANDERPLAS B C, WESTONET N. Safe execution of a large-scale ozonolysis: Preparation of the bisulfite adduct of 2-hydroxyindan-2-carboxaldehyde and its utility in a reductive amination[J]. Org Process Res Dev,2003,7(2):155−160.  doi: 10.1021/op0202235

    3. [3]

      YANG J, ZHENG H, ZHU Y, ZHAO G, ZHANG C, TENG B, XIANG H, LI Y. Effects of calcination temperature on performance of Cu-Zn-Al catalyst for synthesizing c-butyrolactone and 2-methylfuran through the coupling of dehydrogenation and hydrogenation[J]. Catal Commun,2004,5(9):505−510.  doi: 10.1016/j.catcom.2004.06.005

    4. [4]

      XIN Bing-wei, QU Li-qiang, SUN Chang-jun. Progress on synthesis of Effect of 2-methytetrahydrofuran[J]. Shangdong Chem Ind,2003,32:13−15.

    5. [5]

      DONALD B D, DOROTHY Z D, JOHN J G. Cyclodehydration of 1, 4-butanediols by pentaethoxy-phosphorane[J]. J Org Chem,1984,49:2831−2832.  doi: 10.1021/jo00189a044

    6. [6]

      SANEO J, FUKUMOTO T, NAKAO K. Cyclic ethers from lactones, Japan: 7333745 [P].

    7. [7]

      DONG F, ZHU Y, DING G. One-step conversion of furfural into 2-methyltetrahydrofuran under mild conditions[J]. Chem Sus Chem,2015,8(9):1534−1537.  doi: 10.1002/cssc.201500178

    8. [8]

      MASAAKI Y, RYOZI H. Preparation of dihydropyran from furfural[J]. Kôgakuin Daigaku Kenkyû Hôkoku,1954,1:76.

    9. [9]

      PROSKURYAKOV V A, IVANOV P A, GENUSOV M L. Hydrogenation of furfural under pressure[J]. Trudy Leningrad Tekhnol Inst Im Lensoveta,1958,44:3−5.

    10. [10]

      LI Zeng-jie, HUANG Yu-hui, ZHU Ming. Catalytic performance of Ni/Al2O3 catalyst for hydrogenation of 2-methylfuran to 2-methyltetrahydrofuran[J]. J Fuel Chem Technol,2018,46(1):54−58.  doi: 10.3969/j.issn.0253-2409.2018.01.007

    11. [11]

      DING F, ZHANG Y. Synthesis and catalytic performance of Ni/SiO2 for hydrogenation of 2-methylfuran to 2-methyltetrahydrofuran[J]. J Nanomater,2015.

    12. [12]

      ASHOK J, KATHIRASER Y, ANG M L, KAWI S. Ni and/or Ni-Cu alloys supported over SiO2 catalysts synthesized via phyllosilicate structures for steam reforming of biomass tar reaction[J]. Catal Sci & Technol,2015, 5:4398−4409.

    13. [13]

      ZHANG H, GAO X, MA Y, HAN X, NIU L, BAI G. A highly dispersed and stable Ni/mSiO2-AE nanocatalyst for benzoic acid hydrogenation[J]. Catal Sci Technol,2017,7:5993−5999.

    14. [14]

      THOMMES M, KANEKO K, NEIMARK A V. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure Appl Chem,2015,87(9/10):1051−1069.  doi: 10.1515/pac-2014-1117

    15. [15]

      CYCHOSZ K A, NICOLAS R G, MARTNEZ J G. Recent advances in the textural characterization of hierarchically structured nanoporous materials[J]. Chem Soc Rev,2017,46:389−414.  doi: 10.1039/C6CS00391E

    16. [16]

      CHEN L, GUO P, QIAO M. Cu/SiO2 catalysts prepared by the ammonia-evaporation method: Texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol[J]. J Catal,2008,257(1):172−180.  doi: 10.1016/j.jcat.2008.04.021

    17. [17]

      KONG X, ZHU Y, ZHENG H. Ni Nanoparticles Inlaid Nickel Phyllosilicate as a metal-acid bifunctional catalyst for low-temperature hydrogenolysis reactions[J]. ACS Catal,2015,5:5914−5920.  doi: 10.1021/acscatal.5b01080

    18. [18]

      DONG F, DING G, ZHENG H. Highly dispersed Cu nanoparticles as an efficient catalyst for the synthesis of the biofuel 2-methylfuran[J]. Catal Sci Technol,2016,6:767−779.  doi: 10.1039/C5CY00857C

    19. [19]

      LI Z, MO L, KATHIRASER Y. Yolk-Satellite-Shell structured Ni-Yolk@Ni@SiO2 nanocomposite: Superb catalyst toward methane CO2 reforming reaction[J]. ACS Catal,2014,4(5):1526−1536.  doi: 10.1021/cs401027p

    20. [20]

      SUN K Q, MARCEAU E, CHE M. Evolution of nickel speciation during preparation of Ni-SiO2 catalysts: Effect of the number of chelating ligands in [Ni(en)x(H2O)6−2x]2+ precursor complexes[J]. Phys Chem Chem Phys,2006,8(14):1731−1738.  doi: 10.1039/b513319j

    21. [21]

      ZHANG C, ZHU W, LI S. Sintering-resistant Ni-based reforming catalysts obtained via the nanoconfinement effect[J]. Chem Commun,2013,49:9383−9385.  doi: 10.1039/c3cc43895c

    22. [22]

      BURATTIN P, CHE M, LOUIS C. Ni/SiO2 Materials prepared by deposition-precipitation: Influence of the reduction conditions and mechanism of formation of metal particles[J]. J Phys Chem B,2000,104(45):10482−10489.  doi: 10.1021/jp0003151

    23. [23]

      LIU Ji, WANG Dong-xu, XIAO Xian-bin. Effect of calcination temperature on Ni/γ-Al2O3 reduction and catalytic steam reforming of toluene[J]. J Fuel Chem Technol,2014,42(10):1225−1232.  doi: 10.3969/j.issn.0253-2409.2014.10.011

    24. [24]

      GILKEY M J, PANAGIOTOPOULOU P, MIRONENKO A V, JENNESS G R, VALCHOS DG, XU B[J]. ACS Catal, 2015, 5: 3988-3994.

    25. [25]

      SELVAM P, VISWANNATHAN B, SRINIVASAN V. XPS studies of the surface properties of CaNi5[J]. J Electron Spectrosc Relat Phemon,1989,49:203−211.  doi: 10.1016/0368-2048(89)85009-1

  • 加载中
    1. [1]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    2. [2]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    3. [3]

      Guang-Xu DuanQueting ChenRui-Rui ShaoHui-Huang SunTong YuanDong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751

    4. [4]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    5. [5]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    6. [6]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    7. [7]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    8. [8]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    9. [9]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    10. [10]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    11. [11]

      Kangmin WangLiqiu WanJingyu WangChunlin ZhouKe YangLiang ZhouBijin Li . Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, 35(10): 109554-. doi: 10.1016/j.cclet.2024.109554

    12. [12]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    13. [13]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

    14. [14]

      Junjie TANGYunting ZHANGZhengjiang LIUJiani WU . Preparation of CeO2 by starch template method for photo-Fenton degradation of methyl orange. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1617-1631. doi: 10.11862/CJIC.20240420

    15. [15]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    16. [16]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    17. [17]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    18. [18]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    19. [19]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    20. [20]

      Jianqiao ZHANGYang LIUYan HEYaling ZHOUFan YANGShihui CHENGBin XIAZhong WANGShijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444

Metrics
  • PDF Downloads(14)
  • Abstract views(3015)
  • HTML views(757)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return