Citation: NIU Yong-hong, SONG Zi-zhao, LI Yi-ke, WANG Wen-cai, WEN Jian-jun, ZHENG Kun-can. Performance research of lanthanum-loaded dolomite catalyst for pine catalytic gasification[J]. Journal of Fuel Chemistry and Technology, ;2021, 49(1): 47-54. doi: 10.1016/S1872-5813(21)60005-1 shu

Performance research of lanthanum-loaded dolomite catalyst for pine catalytic gasification

  • Corresponding author: NIU Yong-hong, niuyonghong@imust.cn LI Yi-ke, liyk@imust.edu.cn
  • Received Date: 1 August 2020
    Revised Date: 4 October 2020

    Fund Project: The project was supported by the National Natural Science Foundation of China (51768054, 51764046, 51764044),Inner Mongolia Autonomous Region Science and Technology Innovation Guidance Project (KCBJ2018077),Inner Mongolia Natural Science Foundation (2017MS(LH)0524),Inner Mongolia Science and Technology Department Project (20180823) and Baotou Zhongke Development Technology Limited Liability Company Project (ZK2018H003)

Figures(12)

  • To enhance the catalytic effect of dolomite, La/Dol catalyst was prepared by impregnation modification of dolomite with La (NO3)3 as additive. The catalyst was characterized by BET, SEM and XRD. With pine rods as raw materials and La/Dol as reforming catalysts, the effects of gasification temperature and La amount of catalysts on the catalytic gasification of pine were compared and analyzed in a self-made two-stage biomass gasification reforming experimental furnace. The results show that a small amount of La (2%) can obviously promote the forward progress of water gas reaction and perfect the catalytic reforming effect. Under the working condition of steam flow rate of 10 g/min, 2-La/Dol catalyst and reforming temperature of 750℃, with the increase of gasification temperature, the amount of H2 increases significantly, and the highest volume fraction of H2 increases from 28.51% (0-La/Dol) to 41.72% (2-La/Dol). La2O3 in the catalyst promotes the secondary cracking of tar. As a result, the tar content of liquid phase product is obviously reduced, and the number of functional groups is also reduced. La2O3 on dolomite surface occupies active sites, so carbon filaments are not suitable for accumulation and carbon deposition is inhibited. Carbonate (La2O2CO3) in the catalyst can react with carbon to slow down the carbon deposition on the surface and improve the activity and service life of the catalyst.
  • 加载中
    1. [1]

      TIAN Y, ZHOU X, LIN S H, JI X Y, BAI J S, XU M. Syngas production from air-steam gasification of biomass with natural catalysts[J]. Sci Total Environ,2018,645(15):518−523.

    2. [2]

      RANGEL M D C, QUERINO P S, BORGES S M S, MARCHETTI S G, RAMON A P. Hydrogen purification over lanthanum-doped iron oxides by WGSR[J]. Catal Today,2017,296:262−271.  doi: 10.1016/j.cattod.2017.05.058

    3. [3]

      BI Dong-mei, ZHANG Kai-zhen, YI Wei-ming, LIU Shan-jian, LI Po-zheng. Experiment on Al2O3 catalyzed biomass pyrolysis of dolomite-based porous ceramics[J]. Trans Chin Soc Agric Mach,2019,50(10):315−322.  doi: 10.6041/j.issn.1000-1298.2019.10.036

    4. [4]

      Zhang Bo. Study on the characteristics and mechanism of hydrogen production from biomass pyrolysis and gasification enhanced by calcium-based additives[D]. Chongqing: Chongqing University, 2016.

    5. [5]

      NIU Yong-hong, HAN Feng-tao, ZHANG Xue-feng, CHEN Yi-sheng, WANG Li, XU Jia. Performance improvement of steam gasification of pine for hydrogen-rich gas with dolomite catalyst modified by bentonite/limonite[J]. Trans Chin Soc Agric Eng,2017,(7):220−226.

    6. [6]

      SUN Ning. Study on the catalytic vaporization of wood chips with steam to produce hydrogen-rich gas[D]. Beijing: Chinese Academy of Forestry, 2017.

    7. [7]

      LU H L, YANG X Z, GAO G J, WANG J, HAN Ch H, LIANG X Y, LI Ch F, LI Y Y, ZHANG W D, CHEN X T. Metal (Fe, Co, Ce or La) doped nickel catalyst supported on ZrO2 modified mesoporous clays for CO and CO2 methanation[J]. Fuel,2016,183:335−344.  doi: 10.1016/j.fuel.2016.06.084

    8. [8]

      MUSSO M, VEIGA S, ESTEFAN N, BUSSI J. Catalytic assessment of Fe-La-Zr trimetallic mixed oxides in the Fischer-Tropsch synthesis using bio-syngas[J]. Biomass Bioenergy,2019,127(AUG.):105278.1−105278.7.

    9. [9]

      POUR A N, SHAHRI S M K, BOZORGZADEH H R, ZAMANI Y, TAVASOLI A, MARVAST M A. Effect of Mg, La and Ca promoters on the structure and catalytic behavior of iron-based catalysts in Fischer–Tropsch synthesis[J]. Appl Catal A: Gen,2008,348(2):201−208.  doi: 10.1016/j.apcata.2008.06.045

    10. [10]

      VAN DER BERG F R, CRAJE M W J, KOOYMAN P J, VAN DER KRAAN A M, GEUS J W. Synthesis of highly dispersed zirconia-supported iron-based catalysts for Fischer-Tropsch synthesis[J]. Appl Catal A: Gen,2002,235(1):217−224.

    11. [11]

      LUCRÉDIO A F, ASSAF J M, ASSAF E M. Reforming of a model sulfur-free biogas on Ni catalysts supported on Mg(Al)O derived from hydrotalcite precursors: Effect of La and Rh addition[J]. Biomass Bioenergy,2014,60:8−17.  doi: 10.1016/j.biombioe.2013.11.006

    12. [12]

      LIU F, ZHAO L, WANG H, BAI X, LIU Y. Study on the preparation of Ni-La-Ce oxide catalyst for steam reforming of ethanol[J]. Int J Hydrog Energy,2014,39(20):10454−10466.  doi: 10.1016/j.ijhydene.2014.05.036

    13. [13]

      ZHANG Bo, ZHANG Li, YANG Zhong-qing, YAN Yun-Fei, RAN Jing-Yu, PU Ge, HE Jiang, QIN Chang-Lei. Influence of NiO/CaO Additive on Biomass Steam Gasification[J]. J Eng Thermophys,2016,37(9):1961−1968.

    14. [14]

      BAHADI M B., GOO B C, PHAM T L M., SIANG T J, DANH H T, AINIRAZALI N, DAI V N. Hydrogen-rich syngas production from ethanol dry reforming on La-doped Ni/Al2O3 catalysts: effect of promoter loading[J]. Proc Eng,2016,148:654−661.  doi: 10.1016/j.proeng.2016.06.531

    15. [15]

      LIN Shao-hua, ZHOU Ting-ting, LI Jia. Preparation optimization of granular attapulgite adsorbent and its adsorption characteristics for Pb2+ and Cu2+ removal[J]. Sci Technol Eng,2016,16(20):301−305.  doi: 10.3969/j.issn.1671-1815.2016.20.055

    16. [16]

      ZHANG Li-qi. Experimental study on biomass catalytic pyrolysis based on novel composite catalyst[D]. Baotou: Inner Mongolia University of Science and Technology, 2019.

    17. [17]

      NIU Yong-hong, TIAN Yi-ming. experimental catalytic gasification of Ni-Zn/ basalt catalysts[J/OL]. Trans Chin Soc Agric Mach, 2019, 50(6): 331-337.

    18. [18]

      ZHEN Kai-ji. Basis of Catalysis[M]. 3rd ed. Beijing. Science Press, 2005: 166.

    19. [19]

      RACHED J A, CESARIO M R., ESTEPHANE J, TIDAHY H L, GENNEQUIN C, SAMER A S, ANTOINE A A, EDMOND A. Effects of cerium and lanthanum on Ni-based catalysts for CO2, reforming of toluene[J]. J Environ Chem Eng,2018,6(4):4743−4754.  doi: 10.1016/j.jece.2018.06.054

    20. [20]

      WENG Shi-fu. Fourier Transform Infrared Spectroscopy Analysis. [M]. 2nd Ed. Chemical Industry Press, 2010: 256

    21. [21]

      ZHANG Yu-li, XIAO Rui, HE Guang-ying. Study on the influence of Fe/La/SBA-15 on biomass gasification[J]. J Eng Thermophys,2013,34(1):173−176.

    22. [22]

      LI Xiao-hua, WANG Jia-jun, FAN Yong-sheng, LIU Sha, CAI Yi-xi. Experiment of preparing bio-oil by catalytic pyrolysis of Fe, Co, Cu modified HZSM-5[J]. Trans Chin Soc Agric Mach,2017,48(2):305−313.  doi: 10.6041/j.issn.1000-1298.2017.02.041

  • 加载中
    1. [1]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    2. [2]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    3. [3]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    4. [4]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    5. [5]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    11. [11]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    12. [12]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    13. [13]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    14. [14]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    15. [15]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    16. [16]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    17. [17]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    18. [18]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    19. [19]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    20. [20]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

Metrics
  • PDF Downloads(6)
  • Abstract views(2123)
  • HTML views(316)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return