Citation: FENG Ru, GAO Xiu-juan, YANG Qi, LI Ming-jie, ZHANG Jun-feng, SONG Fa-en, ZHANG Qing-de, HAN Yi-zhuo, TAN Yi-sheng. Effects of calcination temperature on the catalytic performance of Ti(SO4)2/CS for DME direct oxidation to polyoxymethylene dimethyl ethers[J]. Journal of Fuel Chemistry and Technology, ;2021, 49(1): 72-79. doi: 10.1016/S1872-5813(21)60004-X shu

Effects of calcination temperature on the catalytic performance of Ti(SO4)2/CS for DME direct oxidation to polyoxymethylene dimethyl ethers

  • Corresponding author: ZHANG Qing-de, qdzhang@sxicc.ac.cn
  • Received Date: 1 August 2020
    Revised Date: 1 September 2020

    Fund Project: The project was supported by the National Natural Science Foundation of China (21773283, 21373253), CAS Interdisciplinary Innovation Team (BK2018001), the Dalian National Laboratory For Clean Energy (DNL) Cooperation Found, CAS (DNL 201903), the Youth Innovation Promotion Association CAS (2014155) and the Open Project Program of State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University (201624)

Figures(6)

  • A series of Ti(SO4)2/activated carbon spheres (CS) bifunctional catalysts were designed and prepared by impregnation method, and the effect of calcination temperature of the catalysts on direct oxidation of dimethyl ether (DME) to polyoxymethylene dimethyl ethers (DMMx) was investigated. The results showed that the performance of Ti(SO4)2/CS catalysts was closely related to the calcination temperature. The 30% Ti(SO4)2/CS catalyst calcined under O2 atmosphere at 280 ℃ exhibited excellent activity over which the conversion of DME reached 11.7% with the selectivity of DMM1−3 up to 75.8%, wherein, the selectivity of DMM2−3 was over 30%. The texture and surface properties of the catalysts were characterized by SEM, XRD, Raman, TG, NH3-TPD and XPS. The suitable amount of weak acid sites and redox sites of the Ti(SO4)2/CS were beneficial to the direct oxidation of DME to DMMx. The calcination temperature changed the distribution of functional groups on the surface of CS which then affected the dispersion form of Ti(SO4)2. The type and amount of acid centers especially the ratio of weak acid and medium strong acid could also be adjusted, which can lead to different gradients of the surface acidity of the catalyst. The reasonable matching of the acidic and redox sites on the catalyst can evidently promote the growth of C−O chain.
  • 加载中
    1. [1]

      GA B V, THAI P Q. Soot emission reduction in a Biogas-DME hybrid dual-fuel engine[J]. Appl Sci-Basel,2020,10(10):3416−3434.

    2. [2]

      PALOMO J, RODRIGUEZ-CANO M A, RODRIGUEZ-MIRASOL J, CORDERO T. ZSM-5-decorated CuO/ZnO/ZrO2 fibers as efficient bifunctional catalysts for the direct synthesis of DME from syngas[J]. Appl Catal B: Environ,2020,270:118893.

    3. [3]

      SHENG Q T, YE R P, GONG W B, SHI X F, XU B, ARGYLE M, ADIDHARMA H, FAN M H. Mechanism and catalytic performance for direct dimethyl ether synthesis by CO2 hydrogenation over CuZnZr/ferrierite hybrid catalyst[J]. J Environ Sci,2020,92:106−117.

    4. [4]

      ZUO H M, MAO D S, GUO X M, YU J. Highly efficient synthesis of dimethyl ether directly from biomass-derived gas over Li-modified Cu-ZnO-Al2O3/HZSM-5 hybrid catalyst[J]. Renew Energy,2018,116:38−47.

    5. [5]

      ZENG L Y, WANG Y Z, MOU J, LIU F, YANG C L, ZHAO T X, WANG X D, CAO J X. Promoted catalytic behavior over gamma-Al2O3 composited with ZSM-5 for crude methanol conversion to dimethyl ether[J]. Int J Hydrogen Energy,2020,45(33):16500−16508.

    6. [6]

      PELAEZ R, MARIN P, ORDONEZ S. Synthesis of formaldehyde from dimethyl ether on alumina-supported molybdenum oxide catalyst[J]. Appl Catal A: Gen,2016,527:137−145.

    7. [7]

      YANG Qi, GAO Xiu-juan, FENG Ru, LI Ming-jie, ZHANG Jun-feng, ZHANG Qing-de, HAN Yi-zhuo, TAN Yi-sheng. MoO3-SnO2 catalyst prepared by hydrothermal synthesis method for dimethyl ether catalytic oxidation[J]. J Fuel Chem Technol,2019,47(8):934−941.  doi: 10.3969/j.issn.0253-2409.2019.08.005

    8. [8]

      GAO Xiu-juan, WANG Wen-feng, ZHANG Zhen-zhou, ZHANG Qing-de, TAN Yi-sheng, HAN-Yi-zhuo. Progresses in synthesis of polymeyhylene dimethyl ethers from dimethyl ether[J]. Petrochem Technol,2017,46(2):143−150.  doi: 10.3969/j.issn.1000-8144.2017.02.001

    9. [9]

      PACHECO M A, MARSHALL C L. Review of dimethyl carbonate (DMC) manufacture and its characteristics as a fuel additive[J]. Energy Fuels,1997,11(1):2−29.

    10. [10]

      HMED M H M, MURAZA O, AL-AMER A M, MIYAKE K, NISHIYAMA N. Development of hierarchical EU-1 zeolite by sequential alkaline and acid treatments for selective dimethyl ether to propylene (DTP)[J]. Appl Catal A: Gen,2015,497:127−134.

    11. [11]

      ZHANG Q D, TAN Y S, YANG C H, XIE H J, HAN Y Z. Characterization and catalytic application of MnCl2 modified HZSM-5 zeolites in synthesis of aromatics from syngas via dimethyl ether[J]. J Ind Eng Chem,2013,19(3):975−980.

    12. [12]

      BARANOWSKI C J, BAHMANPOUR A M, KROCHER O. Catalytic synthesis of polyoxymethylene dimethyl ethers (OME): A review[J]. Appl Catal B: Environ,2017,217:407−420.

    13. [13]

      ZHENG Y Y, TANG Q, WANG T F, WANG J F. Kinetics of synthesis of polyoxymethylene dimethyl ethers from paraformaldehyde and dimethoxymethane catalyzed by ion-exchange resin[J]. Chem Eng Sci,2015,134:758−766.

    14. [14]

      ZHANG J Q, FANG D Y, LIU D H. Evaluation of Zr-alumina in production of polyoxymethylene dimethyl ethers from methanol and formaldehyde: Performance tests and kinetic investigations[J]. Ind Eng Chem Res,2014,53(35):13589−13597.

    15. [15]

      WU Y J, LI Z, XIA C G. Silica-gel-supported dual acidic ionic liquids as efficient catalysts for the synthesis of polyoxymethylene dimethyl Ethers[J]. Ind Eng Chem Res,2016,55(7):1859−1865.

    16. [16]

      LIU H C, IGLESIA E. Selective one-step synthesis of dimethoxymethane via methanol or dimethyl ether oxidation on H3+nVnMo12-nPO40 Keggin structures[J]. J Phys Chem B,2003,107(39):10840−10847.

    17. [17]

      ZHANG Q D, TAN Y S, YANG C H, LIU Y Q, HAN Y Z. Catalytic oxidation of dimethyl ether to dimethoxymethane over MnCl2-H4SiW12O40/SiO2 catalyst[J]. Chin J Catal,2006,27(10):916−920.

    18. [18]

      ZHANG Q D, TAN Y S, YANG C H, HAN Y Z, SHAMOTO J, TSUBAKI N. Catalytic oxidation of dimethyl ether to dimethoxymethane over Cs modified H3PW12O40/SiO2 catalysts[J]. J Nat Gas Chem,2007,16(3):322−325.

    19. [19]

      ZHANG Q D, TAN Y S, YANG C H, HAN Y Z. MnCl2 modified H2SiW12O40/SiO2 catalysts for catalytic oxidation of dimethyl ether to dimethoxymethane[J]. J Mol Catal A: Chem,2007,263(1/2):149−155.

    20. [20]

      ZHANG Q D, TAN Y S, LIU G B, ZHANG J F, HAN Y Z. Rhenium oxide-modified H3PW12O40/TiO2 catalysts for selective oxidation of dimethyl ether to dimethoxy dimethyl ether[J]. Green Chem,2014,16(11):4708−4715.

    21. [21]

      GERBER I C, SERP P. A theory/esperience description of support effects in carbon-supported catalysts[J]. Chem Rev,2020,120:1250−1349.

    22. [22]

      ZHANG Q D, WANG W F, ZHANG Z Z, ZHANG J F, BAI Y X, TSUBAKI N, HAN Y Z, TAN Y S. Application of modified CNTs with Ti(SO4)2 in selective oxidation of dimethyl ether[J]. Catal Sci Technol,2016,6(19):7193−7202.

    23. [23]

      GAO X J, WANG W F, GU Y Y, ZHANG Z Z, ZHANG J F, ZHANG Q D, TSUBAKI N, HAN Y Z, TAN Y S. Synthesis of polyoxymethylene dimethyl ethers from dimethyl ether direct oxidation over carbon-based catalysts[J]. ChemCatChem,2018,10(1):273−279.

    24. [24]

      ZHANG G L, GUAN T T, QIAO J L, WANG J L, LI K X. Free-radical-initiated strategy aiming for pitch-based dual-doped carbon nanosheets engaged into high-energy asymmetric supercapacitors[J]. Energy Storage Mater,2020,26:119−128.

    25. [25]

      ZHANG G L, GUAN T T, CHENG M, WANG Y X, XU N N, QIAO J L, XU F F, WANG Y Z, WANG J L, LI K X. Harvesting honeycomb-like carbon nanosheets with tunable mesopores from mild-modified coal tar pitch for high-performance flexible all-solid-state supercapacitors[J]. J Power Sources,2020,448:227446.

    26. [26]

      ZHANG D D, HE C, WANG Y Z, ZHAO J H, WANG J L, LI K X. Oxygen-rich hierarchically porous carbons derived from pitch-based oxidized spheres for boosting the supercapacitive performance[J]. J Colloid Interf Sci,2019,540:439−447.

    27. [27]

      ZHU Y P, JING Y, VASILEFF A, HEINE T, QIAO S Z. 3D synergistically active carbon nanofibers for improved oxygen evolution[J]. Adv Energy Mater,2017,7(14):1602928.

    28. [28]

      QIU S, XIAO L F, SUSHKO M L, HAN K S, SHAO Y Y, YAN M Y, LIANG X M, MAI L Q, FENG J W, CAO Y L, AI X P, YANG H X, LIU J. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage[J]. Adv Energy Mater,2017,7(17):1700403.

    29. [29]

      MISHRA A K, RAMAPRABHU S. Functionalized graphene sheets for arsenic removal and desalination of sea water[J]. Desalination,2011,282:39−45.

    30. [30]

      WANG J L, LIU H, LIU Y, WANG W H, SUN Q, WANG X B, ZHAO X Y, HU H, WU M B. Sulfur bridges between Co9S8 nanoparticles and carbon nanotubes enabling robust oxygen electrocatalysis[J]. Carbon,2019,144:259−268.

    31. [31]

      QI W, LIU W, ZHANG B S, GU X M, GUO X L, SU D S. Oxidative dehydrogenation on nanocarbon: Identification and quantification of active Sites by chemical titration[J]. Angew Chem Int Ed,2013,52(52):14224−14228.

    32. [32]

      JUNG S M, GRANGE P. Characterization and reactivity of pure TiO2-SO42- SCR catalyst: Influence of SO42- content[J]. Cataly Today,2000,59(34):305−312.

    33. [33]

      YAMAGUCHI T, JIN T, TANABE K. Structure of acid sites on sulfur-promoted iron oxide[J]. J Phys Chem,1986,90(14):3148−3152.

  • 加载中
    1. [1]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    2. [2]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    3. [3]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    4. [4]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    5. [5]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    6. [6]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    7. [7]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    8. [8]

      Jiaxin SuJiaqi ZhangShuming ChaiYankun WangSibo WangYuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-0. doi: 10.3866/PKU.WHXB202408012

    9. [9]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    10. [10]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    11. [11]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    12. [12]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    13. [13]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    14. [14]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    15. [15]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    16. [16]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    17. [17]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    18. [18]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    19. [19]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    20. [20]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

Metrics
  • PDF Downloads(4)
  • Abstract views(2228)
  • HTML views(327)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return