Effect of nickel cobalt co-catalyst on catalytic activity of molybdenum naphthenate for the hydroprocessing of coal tar pitch in suspension bed
- Corresponding author: LI Ming-shi, mingshili@cczu.edu.cn
Citation:
WU Meng-de, LI Guang-ci, LI Ming-shi, LI Xue-bing, ZHUANG Qing-fa, CHEN Song. Effect of nickel cobalt co-catalyst on catalytic activity of molybdenum naphthenate for the hydroprocessing of coal tar pitch in suspension bed[J]. Journal of Fuel Chemistry and Technology,
;2021, 49(1): 27-36.
doi:
10.1016/S1872-5813(21)60002-6
HE D M, GUAN J, WU D, ZHAO S C, ZHANG Q M. Modification of coal tar pitch to reduce the carcinogenic polycyclic aromatic hydrocarbons[J]. Appl Mech and Mater,2013,295−298:3098−3103.
doi: 10.4028/www.scientific.net/AMM.295-298.3098
XIAO Jin, WANG Ying, LIU Yong-dong, LAI Ting-qing, LI Jie. Progress in coal tar pitch modification[J]. Carbon Tech,2010,29(2):31−37.
doi: 10.3969/j.issn.1001-3741.2010.02.008
DANG A-lei, LI Tie-hu, ZHANG Wen-juan, ZHAO Ting-kai, FANG Chang-qing, WANG Zhen. Newest research in progress of coal tar pitch[J]. Carbon Techn,2011,30(6):19−23.
doi: 10.3969/j.issn.1001-3741.2011.06.006
CHANG Hong-hong, WEI Wen-long, WANG Zhi-zhong, YANG Huai-wang, YAO Run-sheng. Properties and application of coal tar pitch[J]. Shanxi Coking Coal Sci & Technol,2007,(2):39−42+46.
doi: 10.3969/j.issn.1672-0652.2007.02.014
WANG L, WANG J, JIA F, WANG C, CHEN M. Nanoporous carbon synthesized with coal tar pitch and its capacitive performance[J]. J Mater Chem A,2013,01(33):9498−9507.
doi: 10.1039/c3ta10426e
DIAZ C, BLANCO C G. NMR: A powerful tool in the characterization of coal tar pitch[J]. Energy Fuels,2003,17(4):907−913.
SUN Z, LI D, MA H, TIAN P, LI X, LI W, ZHU Y. Characterization of asphaltene isolated from low-temperature coal tar[J]. Fuel Process Technol,2015,138:413−418.
doi: 10.1016/j.fuproc.2015.05.008
LIANG Wen-jie. Heavy Oil Chemistry[M]. Dongying: Petroleum University Press, 2000.
LIM S H, GO K S, KWON E H, NHO N S, LEE J G. Investigation of asphaltene dispersion stability in slurry-phase hydrocracking reaction[J]. Fuel,2020,271:117509.
doi: 10.1016/j.fuel.2020.117509
ZHAO Lin-yun. Studies on coal/oil Co-Hydroprocessing with mild conditions and preliminary process design[D]. Qingdao: China University of Petroleum (East China), 2016.
XUE Yong-bing, LIN Kai-cheng, ZOU Gang-ming. Functions and kinds of solvents in coal direct liquefaction[J]. Coal Convers,1999,22(4):1−4.
doi: 10.3969/j.issn.1004-4248.1999.04.001
WANG Xue-yun, ZHAO Yuan, YAN Bing-feng. Study on the slurry ability of different heavy oils using as coal-oil co-processing solvent[J]. Coal Qual Technol,2019,34(3):7−10+14.
doi: 10.3969/j.issn.1007-7677.2019.03.002
PEI Ting, CHEN Gang, LU Yong-bin, LI Bo. Development of Kerosene Co-Refining Technology and Catalyst Research[C]. Proceedings of the 11th Annual National Conference on Industrial Catalytic Technology and Applications, 2014: 30−33.
HUANG Chuan-feng, LI Da-peng, YANG Tao. Status and research trends of co-processing of coal and oil[J]. Modern Chemical Industry,2016,36(8):8−13.
GUO Qiang, GAO Xiong-cheng, AI Ke-li. Application of suspended bed hydrocracking technology in kerosene co-refining unit[J]. China Petrochem,2017,(4):45−46.
SHI Mu-er, ZHONG Chang-wen. Preparation of homogeneous catalyst molybdenum naphthenate[J]. J of Daqing Pet Inst,1998,22(4):40−42+102.
HU Zhi-meng. Synthesis and antiwear performance of molybdenum naphthenate[J]. China Molybdenum Ind,1999,23(6):33−34.
GUO Yong-hui, YANG Zhan-kui. Applications and preparation of nickel naphthenate[J]. Value Eng,2010,29(24):247.
doi: 10.3969/j.issn.1006-4311.2010.24.228
HE Xiao-hui. Study on the synthesis of cobalt iso-octoate[J]. Petrochem Technol,1999,28(3):36−38.
QIN Yi-hong, HE Han-bing, CHEN Yu-xian, HUANG Cao-ming. Study on the synthesis of cobalt iso-octoate[J]. Nonferrous Met (Smelting Part),2005,(6):39−41+45.
WANG Yu-mei, YAN Ying. Preparation of cobalt naphthenate[J]. Liaoning Chem Ind,2002,31(10):435−436+455.
doi: 10.3969/j.issn.1004-0935.2002.10.007
LI M, LI H, JIANG F, CHU Y, NIE H. The Relation between morphology of (Co)MoS2 phases and selective hydrodesulfurization for CoMo catalysts[J]. Catal Today,2010,149:35−39.
doi: 10.1016/j.cattod.2009.03.017
DOU Min-na, XIU Yuan, CAO Qing, XU Hua, XIAO Zhan-min. Review of test methods for four components of residue and petroleum bitumen[J]. Petrocheml Technol & Appl,2019, 37(5):356−360.
doi: 10.3969/j.issn.1009-0045.2019.05.020
YAN Fang, XIE Yong-jie. Investigation of separation of four fractions and interfacial properties of Da Qing crucial oil[J]. Chem Anal Meterage,2009,18(4):20−24.
doi: 10.3969/j.issn.1008-6145.2009.04.006
LI Hong-feng, ZHOU Zi-bing. Study on the method of chemical component analysis of asphaltene[J]. Heilongjiang Jiaotong Keji,2004,(8):17−18.
doi: 10.3969/j.issn.1008-3383.2004.08.013
MU Bao-quan, ZHANG Shu-xia. Improvement and optimization teaching of heavy oil four components analysis test[J]. Chem Educ (Chinese and English),2020,41(12):75−78.
GUO Shu-xiang. Analysis of four component of heavy oil[J]. Spec Petrochem,2013,30(6):75−77.
doi: 10.3969/j.issn.1003-9384.2013.06.021
LI Y, ZHANG T, LIU D, LIU B, LU Y, CHAI Y, LIU C. Study of the promotion effect of citric acid on the active NiMoS phase in NiMo/Al2O3 catalysts[J]. Ind Eng Chem Res,2019,58(37):17195−17206.
CORTÉS-JÁCOME M A, ESCOBAR J, ANGELES C C, LÓPEZ-SALINAS E, ROMERO E, FERRAT G, TOLEDO-ANTONIO J A. Highly dispersed CoMoS phase on titania nanotubes as efficient HDS catalysts[J]. Catal Today,2008,130(01):56−62.
doi: 10.1016/j.cattod.2007.07.012
KIM K D, LEE Y K. Active phase of dispersed mos2 catalysts for slurry phase hydrocracking of vacuum residue[J]. J Catalysis,2019,369:111−121.
doi: 10.1016/j.jcat.2018.10.013
KRIJN P D J, LEON C A V D O, EELCO T C V, SONJA E, ABRAHAM J, HEINER F, PETRA E, DE J. High-resolution electron tomography study of an industrial Ni-Mo/-Al2O3 hydrotreating catalyst[J]. J Phys Chem B,2006,110(21):10209−10212.
doi: 10.1021/jp061584f
DEVERS E, AFANASIEV P, JOUGUET B, VRINAT M. Hydrothermal syntheses and catalytic properties of dispersed molybdenum sulfides[J]. Cata Lett,2002,82:13−17.
doi: 10.1023/A:1020512320773
HUANG Peng, LI Wen-bo, MAO Xue-feng, ZHAO Peng. Study on suspension bed hydrocracking of medium temperature pyrolytic heavy tar fraction[J]. J Fuel Chem Technol,2020,48(2):154−162.
doi: 10.3969/j.issn.0253-2409.2020.02.004
DAI Xin, DENG Wen-an. Application oil-soluble MoS2 in slurry-bed hydrocraking for heavy oil[J]. Pet Ref Eng,2018,48(4):40−44.
doi: 10.3969/j.issn.1002-106X.2018.04.011
HENRIK T. In situ mössbauer emission spectroscopy studies of unsupported and supported sulfided CoMo hydrodesulfurization catalysts: Evidence for and nature of a CoMoS phase[J]. J Catalysis,1981,68(02):433−452.
doi: 10.1016/0021-9517(81)90114-7
DAAGE M, CHIANELLI R R. Structure-function relations in molybdenum sulfide catalysts: The "Rim-Edge" model[J]. J Catal,1994,149(2):414−427.
doi: 10.1006/jcat.1994.1308
ZHENG P, LI T, CHI K, XIAO C, FAN J, WANG X, DUAN A. DFT Insights into the formation of sulfur vacancies over corner/edge site of Co/Ni-promoted MoS2 and WS2 under the hydrodesulfurization conditions[J]. Appl Cata B Environ,2019,257:117937.
doi: 10.1016/j.apcatb.2019.117937
LI C, HAN Y, YANG T, DENG W. Preliminary study on the influence of catalyst dosage on coke formation of heavy oil slurry-bed hydrocracking[J]. Fuel,2020,270:117489.
doi: 10.1016/j.fuel.2020.117489
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
(a): molybdenum naphthenate; (b): nickel naphthenate; (c): nickel iso-octoate; (d): cobalt naphthenate; (e):cobalt iso-octoate
(a): molybdenum naphthenate & nickel naphthenate; (b): molybdenum naphthenate & nickel iso-octanate
(a): molybdenum naphthenate; (b): molybdenum naphthenate & nickel naphthenate; (c): molybdenum naphthenate & nickel iso-octanate; (d): molybdenum naphthenate & cobalt naphthenate; (e): molybdenum naphthenate & cobalt iso-octanate
(a): molybdenum naphthenate & cobalt naphthenate; (b): molybdenum naphthenate & cobalt iso-octanate
(a): molybdenum naphthenate; (b): molybdenum naphthenate & nickel naphthenate; (c): molybdenum naphthenate & nickel iso-octanate; (d): molybdenum naphthenate & cobalt naphthenate; (e): molybdenum naphthenate & cobalt iso-octanate