Citation: WU Meng-de, LI Guang-ci, LI Ming-shi, LI Xue-bing, ZHUANG Qing-fa, CHEN Song. Effect of nickel cobalt co-catalyst on catalytic activity of molybdenum naphthenate for the hydroprocessing of coal tar pitch in suspension bed[J]. Journal of Fuel Chemistry and Technology, ;2021, 49(1): 27-36. doi: 10.1016/S1872-5813(21)60002-6 shu

Effect of nickel cobalt co-catalyst on catalytic activity of molybdenum naphthenate for the hydroprocessing of coal tar pitch in suspension bed

  • Corresponding author: LI Ming-shi, mingshili@cczu.edu.cn
  • Received Date: 15 September 2020
    Revised Date: 17 October 2020

    Fund Project: The project was supported by National Natural Science Foundation of China (21761132006), Open Fund of State Key Laboratory of Heavy Oil (2018-02), Scientific Research and Innovation Fund of Qingdao Institute of Energy, and Clean Energy Innovation Institute of Chinese Academy of Sciences (QIBEBT l201933).

Figures(5)

  • Five dispersed molybdenum, nickel and cobalt oil soluble homogeneous catalysts were synthesized. The hydrogenation of coal tar pitch was under the conditions of 370 °C, 10 MPa hydrogen pressure, and 4 h reaction time in an autoclave reactor. The effects of molybdenum naphthenate addition, molybdenum nickel and molybdenum cobalt bimetallic ratios on hydrogenation were investigated. The catalytic hydrogenation effect was evaluated by the liquid yield. A variety of analytical methods, such as elemental analysis, ICP-MS, TEM, XPS, and four component separation, were used to explore the optimal catalytic system for the slurry bed hydrogenation of coal tar pitch. The results show that the optimal catalytic system is molybdenum naphthenate and nickel naphthenate ratio of 1∶1 at catalyst amount of 2×103. Under optimal conditions, the liquid yield is 85.3%, the residue yield is 10.6%, and the gas yield is 4.1%.
  • 加载中
    1. [1]

      HE D M, GUAN J, WU D, ZHAO S C, ZHANG Q M. Modification of coal tar pitch to reduce the carcinogenic polycyclic aromatic hydrocarbons[J]. Appl Mech and Mater,2013,295−298:3098−3103.  doi: 10.4028/www.scientific.net/AMM.295-298.3098

    2. [2]

      XIAO Jin, WANG Ying, LIU Yong-dong, LAI Ting-qing, LI Jie. Progress in coal tar pitch modification[J]. Carbon Tech,2010,29(2):31−37.  doi: 10.3969/j.issn.1001-3741.2010.02.008

    3. [3]

      DANG A-lei, LI Tie-hu, ZHANG Wen-juan, ZHAO Ting-kai, FANG Chang-qing, WANG Zhen. Newest research in progress of coal tar pitch[J]. Carbon Techn,2011,30(6):19−23.  doi: 10.3969/j.issn.1001-3741.2011.06.006

    4. [4]

      CHANG Hong-hong, WEI Wen-long, WANG Zhi-zhong, YANG Huai-wang, YAO Run-sheng. Properties and application of coal tar pitch[J]. Shanxi Coking Coal Sci & Technol,2007,(2):39−42+46.  doi: 10.3969/j.issn.1672-0652.2007.02.014

    5. [5]

      WANG L, WANG J, JIA F, WANG C, CHEN M. Nanoporous carbon synthesized with coal tar pitch and its capacitive performance[J]. J Mater Chem A,2013,01(33):9498−9507.  doi: 10.1039/c3ta10426e

    6. [6]

      DIAZ C, BLANCO C G. NMR: A powerful tool in the characterization of coal tar pitch[J]. Energy Fuels,2003,17(4):907−913.

    7. [7]

      SUN Z, LI D, MA H, TIAN P, LI X, LI W, ZHU Y. Characterization of asphaltene isolated from low-temperature coal tar[J]. Fuel Process Technol,2015,138:413−418.  doi: 10.1016/j.fuproc.2015.05.008

    8. [8]

      LIANG Wen-jie. Heavy Oil Chemistry[M]. Dongying: Petroleum University Press, 2000.

    9. [9]

      LIM S H, GO K S, KWON E H, NHO N S, LEE J G. Investigation of asphaltene dispersion stability in slurry-phase hydrocracking reaction[J]. Fuel,2020,271:117509.  doi: 10.1016/j.fuel.2020.117509

    10. [10]

      ZHAO Lin-yun. Studies on coal/oil Co-Hydroprocessing with mild conditions and preliminary process design[D]. Qingdao: China University of Petroleum (East China), 2016.

    11. [11]

      XUE Yong-bing, LIN Kai-cheng, ZOU Gang-ming. Functions and kinds of solvents in coal direct liquefaction[J]. Coal Convers,1999,22(4):1−4.  doi: 10.3969/j.issn.1004-4248.1999.04.001

    12. [12]

      WANG Xue-yun, ZHAO Yuan, YAN Bing-feng. Study on the slurry ability of different heavy oils using as coal-oil co-processing solvent[J]. Coal Qual Technol,2019,34(3):7−10+14.  doi: 10.3969/j.issn.1007-7677.2019.03.002

    13. [13]

      PEI Ting, CHEN Gang, LU Yong-bin, LI Bo. Development of Kerosene Co-Refining Technology and Catalyst Research[C]. Proceedings of the 11th Annual National Conference on Industrial Catalytic Technology and Applications, 2014: 30−33.

    14. [14]

      HUANG Chuan-feng, LI Da-peng, YANG Tao. Status and research trends of co-processing of coal and oil[J]. Modern Chemical Industry,2016,36(8):8−13.

    15. [15]

      GUO Qiang, GAO Xiong-cheng, AI Ke-li. Application of suspended bed hydrocracking technology in kerosene co-refining unit[J]. China Petrochem,2017,(4):45−46.

    16. [16]

      SHI Mu-er, ZHONG Chang-wen. Preparation of homogeneous catalyst molybdenum naphthenate[J]. J of Daqing Pet Inst,1998,22(4):40−42+102.

    17. [17]

      HU Zhi-meng. Synthesis and antiwear performance of molybdenum naphthenate[J]. China Molybdenum Ind,1999,23(6):33−34.

    18. [18]

      GUO Yong-hui, YANG Zhan-kui. Applications and preparation of nickel naphthenate[J]. Value Eng,2010,29(24):247.  doi: 10.3969/j.issn.1006-4311.2010.24.228

    19. [19]

      HE Xiao-hui. Study on the synthesis of cobalt iso-octoate[J]. Petrochem Technol,1999,28(3):36−38.

    20. [20]

      QIN Yi-hong, HE Han-bing, CHEN Yu-xian, HUANG Cao-ming. Study on the synthesis of cobalt iso-octoate[J]. Nonferrous Met (Smelting Part),2005,(6):39−41+45.

    21. [21]

      WANG Yu-mei, YAN Ying. Preparation of cobalt naphthenate[J]. Liaoning Chem Ind,2002,31(10):435−436+455.  doi: 10.3969/j.issn.1004-0935.2002.10.007

    22. [22]

      LI M, LI H, JIANG F, CHU Y, NIE H. The Relation between morphology of (Co)MoS2 phases and selective hydrodesulfurization for CoMo catalysts[J]. Catal Today,2010,149:35−39.  doi: 10.1016/j.cattod.2009.03.017

    23. [23]

      DOU Min-na, XIU Yuan, CAO Qing, XU Hua, XIAO Zhan-min. Review of test methods for four components of residue and petroleum bitumen[J]. Petrocheml Technol & Appl,2019, 37(5):356−360.  doi: 10.3969/j.issn.1009-0045.2019.05.020

    24. [24]

      YAN Fang, XIE Yong-jie. Investigation of separation of four fractions and interfacial properties of Da Qing crucial oil[J]. Chem Anal Meterage,2009,18(4):20−24.  doi: 10.3969/j.issn.1008-6145.2009.04.006

    25. [25]

      LI Hong-feng, ZHOU Zi-bing. Study on the method of chemical component analysis of asphaltene[J]. Heilongjiang Jiaotong Keji,2004,(8):17−18.  doi: 10.3969/j.issn.1008-3383.2004.08.013

    26. [26]

      MU Bao-quan, ZHANG Shu-xia. Improvement and optimization teaching of heavy oil four components analysis test[J]. Chem Educ (Chinese and English),2020,41(12):75−78.

    27. [27]

      GUO Shu-xiang. Analysis of four component of heavy oil[J]. Spec Petrochem,2013,30(6):75−77.  doi: 10.3969/j.issn.1003-9384.2013.06.021

    28. [28]

      LI Y, ZHANG T, LIU D, LIU B, LU Y, CHAI Y, LIU C. Study of the promotion effect of citric acid on the active NiMoS phase in NiMo/Al2O3 catalysts[J]. Ind Eng Chem Res,2019,58(37):17195−17206.

    29. [29]

      CORTÉS-JÁCOME M A, ESCOBAR J, ANGELES C C, LÓPEZ-SALINAS E, ROMERO E, FERRAT G, TOLEDO-ANTONIO J A. Highly dispersed CoMoS phase on titania nanotubes as efficient HDS catalysts[J]. Catal Today,2008,130(01):56−62.  doi: 10.1016/j.cattod.2007.07.012

    30. [30]

      KIM K D, LEE Y K. Active phase of dispersed mos2 catalysts for slurry phase hydrocracking of vacuum residue[J]. J Catalysis,2019,369:111−121.  doi: 10.1016/j.jcat.2018.10.013

    31. [31]

      KRIJN P D J, LEON C A V D O, EELCO T C V, SONJA E, ABRAHAM J, HEINER F, PETRA E, DE J. High-resolution electron tomography study of an industrial Ni-Mo/-Al2O3 hydrotreating catalyst[J]. J Phys Chem B,2006,110(21):10209−10212.  doi: 10.1021/jp061584f

    32. [32]

      DEVERS E, AFANASIEV P, JOUGUET B, VRINAT M. Hydrothermal syntheses and catalytic properties of dispersed molybdenum sulfides[J]. Cata Lett,2002,82:13−17.  doi: 10.1023/A:1020512320773

    33. [33]

      HUANG Peng, LI Wen-bo, MAO Xue-feng, ZHAO Peng. Study on suspension bed hydrocracking of medium temperature pyrolytic heavy tar fraction[J]. J Fuel Chem Technol,2020,48(2):154−162.  doi: 10.3969/j.issn.0253-2409.2020.02.004

    34. [34]

      DAI Xin, DENG Wen-an. Application oil-soluble MoS2 in slurry-bed hydrocraking for heavy oil[J]. Pet Ref Eng,2018,48(4):40−44.  doi: 10.3969/j.issn.1002-106X.2018.04.011

    35. [35]

      HENRIK T. In situ mössbauer emission spectroscopy studies of unsupported and supported sulfided CoMo hydrodesulfurization catalysts: Evidence for and nature of a CoMoS phase[J]. J Catalysis,1981,68(02):433−452.  doi: 10.1016/0021-9517(81)90114-7

    36. [36]

      DAAGE M, CHIANELLI R R. Structure-function relations in molybdenum sulfide catalysts: The "Rim-Edge" model[J]. J Catal,1994,149(2):414−427.  doi: 10.1006/jcat.1994.1308

    37. [37]

      ZHENG P, LI T, CHI K, XIAO C, FAN J, WANG X, DUAN A. DFT Insights into the formation of sulfur vacancies over corner/edge site of Co/Ni-promoted MoS2 and WS2 under the hydrodesulfurization conditions[J]. Appl Cata B Environ,2019,257:117937.  doi: 10.1016/j.apcatb.2019.117937

    38. [38]

      LI C, HAN Y, YANG T, DENG W. Preliminary study on the influence of catalyst dosage on coke formation of heavy oil slurry-bed hydrocracking[J]. Fuel,2020,270:117489.  doi: 10.1016/j.fuel.2020.117489

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    3. [3]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    4. [4]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    5. [5]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    8. [8]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    9. [9]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    10. [10]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    11. [11]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    12. [12]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    15. [15]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    16. [16]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    17. [17]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    18. [18]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    19. [19]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    20. [20]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

Metrics
  • PDF Downloads(15)
  • Abstract views(2692)
  • HTML views(533)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return