Citation:
Hailong Liu, Zhiwei Huang, Haixiao Kang, Chungu Xia, Jing Chen. Selective hydrogenolysis of biomass-derived furfuryl alcohol into 1,2-and 1,5-pentanediol over highly dispersed Cu-Al2O3 catalysts[J]. Chinese Journal of Catalysis,
;2016, 37(5): 700-710.
doi:
10.1016/S1872-2067(15)61080-4
-
Cu nanoparticles supported on a variety of oxide supports, including SiO2, TiO2, ZrO2, Al2O3, MgO and ZnO, were investigated for the hydrogenolysis of biomass-derived furfuryl alcohol to 1,2-pentanediol and 1,5-pentanediol. A Cu-Al2O3 catalyst with 10 wt% Cu loading prepared by a co-precipitation method exhibited the best performance in terms of producing pentanediols compared with the other materials. This catalyst generated an 85.8% conversion and a 70.3% combined selectivity for the target pentanediols at 413 K and 8 MPa H2 over an 8-h reaction. The catalyst could also be recycled over repeated reaction trials without any significant decrease in productivity. Characterizations with X-ray diffraction, NH3/CO2-temperature programmed desorption, N2 adsorption, transmission electron microscopy and N2O chemisorption demonstrated that intimate and effective interactions between Cu particles and the acidic Al2O3 support in this material greatly enhanced its activity and selectivity. The promotion of the hydrogenolysis reaction was found to be especially sensitive to the Cu particle size, and the catalyst with Cu particles 1.9 to 2.4 nm in size showed the highest turnover frequency during the synthesis of pentanediols.
-
-
-
[1]
[1] A. Corma, S. Iborra, A. Velty, Chem. Rev., 2007, 107, 2411-2502.
-
[2]
[2] P. Gallezot, Chem. Soc. Rev., 2012, 41, 1538-1558.
-
[3]
[3] C. Z. Li, X. C. Zhao, A. Q. Wang, G. W. Huber, T. Zhang, Chem. Rev., 2015, 115, 11559-11624.
-
[4]
[4] R. Karinen, K. Vilonen, M. Niemelä, ChemSusChem, 2011, 4, 1002-1016.
-
[5]
[5] I. Agirrezabal-Telleria, F. Hemmann, C. Jäger, P. L. Arias, E. Kemnitz, J. Catal., 2013, 305, 81-91.
-
[6]
[6] K. Yan, G. S. Wu, T. Lafleur, C. Jarvis, Renew. Sust. Energ. Rev., 2014, 38, 663-676.
-
[7]
[7] M. Besson, P. Gallezot, C. Pinel, Chem. Rev., 2014, 114, 1827-1870.
-
[8]
[8] Y. Nakagawa, M. Tamura, K. Tomishige, ACS Catal., 2013, 3, 2655-2668.
-
[9]
[9] M. Chia, Y. J. Pagán-Torres, D. Hibbitts, Q. H. Tan, H. N. Pham, A. K. Datye, M. Neurock, R. J. Davis, J. A. Dumesic, J. Am. Chem. Soc., 2011, 133, 12675-12689.
-
[10]
[10] T. Mizugaki, T. Yamakawa, Y. Nagatsu, Z. Maeno, T. Mitsudome, K. Jitsukawa, K. Kaneda, ACS Sust. Chem. Eng., 2014, 2, 2243-2247.
-
[11]
[11] S. Bhogeswararao, D. Srinivas, J. Catal., 2015, 327, 65-77.
-
[12]
[12] S. S. Li, N. Li, G. Y. Li, L. Li, A. Q. Wang, Y. Cong, X. D. Wang, T. Zhang, Green Chem., 2015, 17, 3644-3652.
-
[13]
[13] M. J. Climent, A. Corma, S. Iborra, Green Chem., 2014, 16, 516-547.
-
[14]
[14] J. Lee, S. P. Burt, C. A. Carrero, A. C. Alba-Rubio, I. Ro, B. J. O'Neill, H. J. Kim, D. H. K. Jackson, T. F. Kuech, I. Hermans, J. A. Dumesic, G. W. Huber, J. Catal., 2015, 330, 19-27.
-
[15]
[15] S. Koso, I. Furikado, A. Shimao, T. Miyazawa, K. Kunimori, K. Tomishige, Chem. Commun., 2009, 2035-2037.
-
[16]
[16] W. J. Xu, H. F. Wang, X. H. Liu, J. W. Ren, Y. Q. Wang, G. Z. Lu, Chem. Commun., 2011, 47, 3924-3926.
-
[17]
[17] B. Zhang, Y. L. Zhu, G. Q. Ding, H. Y. Zheng, Y. W. Li, Green Chem., 2012, 14, 3402-3409.
-
[18]
[18] B. Pholjaroen, N. Li, Y. Huang, L. Li, A. Wang, T. Zhang, Catal. Today, 2015, 245, 93-99.
-
[19]
[19] S. B. Liu, Y. Amada, M. Tamura, Y. Nakagawa, K. Tomishige, Green Chem., 2014, 16, 617-626.
-
[20]
[20] S. B. Liu, Y. Amada, M. Tamura, Y. Nakagawa, K. Tomishige, Catal. Sci. Technol., 2014, 4, 2535-2549.
-
[21]
[21] S. Koso, N. Ueda, Y. Shinmi, K. Okumura, T. Kizuka, K. Tomishige, J. Catal., 2009, 267, 89-92.
-
[22]
[22] O. Koch, A. Köckritz, M. Kant, A. Martin, A. Schöning, U. Armbruster, M. Bartoszek, S. Evert, B. Lange, R. Bienert, US Patent 20 140 066 666, 2012.
-
[23]
[23] K. Y. Chen, S. Koso, T. Kubota, Y. Nakagawa, K. Tomishige, ChemCatChem, 2010, 2, 547-555.
-
[24]
[24] K. Y. Chen, K. Mori, H. Watanabe, Y. Nakagawa, K. Tomishige, J. Catal., 2012, 294, 171-183.
-
[25]
[25] H. Adkins, R. Connor, J. Am. Chem. Soc., 1931, 53, 1091-1095.
-
[26]
[26] Z. W. Huang, J. Chen, Y. Q. Jia, H. L. Liu, C. G. Xia, H. C. Liu, Appl. Catal. B, 2014, 147, 377-386.
-
[27]
[27] H. L. Liu, Z. W. Huang, C. G. Xia, Y. Q. Jia, J. Chen, H. C. Liu, ChemCatChem, 2014, 6, 2918-2928.
-
[28]
[28] Z. W. Huang, F. Cui, H. X. Kang, J. Chen, X. Z. Zhang, C. G. Xia, Chem. Mater., 2008, 20, 5090-5099.
-
[29]
[29] H. L. Liu, Z. W. Huang, Z. B. Han, K. L. Ding, H. C. Liu, C. G. Xia, J. Chen, Green Chem., 2015, 17, 4281-4290.
-
[30]
[30] H. L. Liu, Z. W. Huang, F. Zhao, F. Cui, X. M. Li, C. G. Xia, J. Chen, Catal. Sci. Technol., 2016, 6, 668-671.
-
[31]
[31] J. Tuteja, H. Choudhary, S. Nishimura, K. Ebitani, ChemSusChem, 2014, 7, 96-100.
-
[32]
[32] C. J. G. Van Der Grift, A. F. H. Wielers, B. P. J. Jogh, J. Van Beunum, M. De Boer, M. Versluijs-Helder, J. W. Geus, J. Catal., 1991, 131, 178-189.
-
[33]
[33] Y. F. Zhu, X. Kong, X. Q. Li, G. Q. Ding, Y. L. Zhu, Y. W. Li, ACS Catal., 2014, 4, 3612-3620.
-
[34]
[34] X. H. He, H. C. Liu, Catal. Today, 2014, 233, 133-139.
-
[35]
[35] R. A. Van Santen, Acc. Chem. Res., 2009, 42, 57-66.
-
[36]
[36] S. Wang, K. H. Yin, Y. C. Zhang, H. C. Liu, ACS Catal., 2013, 3, 2112-2121.
-
[37]
[37] S. Sitthisa, T. Sooknoi, Y. G. Ma, P. B. Balbuena, D. E. Resasco, J. Catal., 2011, 277, 1-13.
-
[38]
[38] R. S. Rao, A. B. Walters, M. A. Vannice, J. Phys. Chem. B, 2005, 109, 2086-2092.
-
[39]
[39] Y. F. Zhu, X. Kong, X. Q. Li, G. Q. Ding, Y. L. Zhu, Y. W. Li, ACS Catal., 2014, 4, 3612-3620.
-
[40]
[40] M. A. Mellmer, J. M. R. Gallo, D. M. Alonso, J. A. Dumesic, ACS Catal., 2015, 5, 3354-3359.
-
[41]
[41] J. Yang, H. Y. Zheng, Y. L. Zhu, G. W. Zhao, C. H. Zhang, B. T. Teng, H. W. Xiang, Y. W. Li, Catal. Commun., 2004, 5, 505-510.
-
[42]
[42] J. Lessard, J. F. Morin, J. F. Wehrung, D. Magnin, E. Chornet, Top. Catal., 2010, 53, 1231-1234.
-
[43]
[43] S. Sitthisa, W. An, D.E. Resasco, J. Catal., 2011, 284, 90-101.
-
[44]
[44] S. G. Wang, V. Vorotnikov, D. G. Vlachos, Green Chem., 2014, 16, 736-747.
-
[45]
[45] M. J. Gilkey, P. Panagiotopoulou, A. V. Mironenko, G. R. Jenness, D. G. Vlachos, B. J. Xu, ACS Catal., 2015, 5, 3988-3994.
-
[1]
-
-
-
[1]
Yuanyuan Ping , Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092
-
[2]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[3]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
-
[4]
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
-
[5]
Yifeng TAN , Ping CAO , Kai MA , Jingtong LI , Yuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147
-
[6]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[7]
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026
-
[8]
Xinhao Yan , Guoliang Hu , Ruixi Chen , Hongyu Liu , Qizhi Yao , Jiao Li , Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073
-
[9]
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
-
[10]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[11]
Yiling Wu , Peiyao Jin , Shenyue Tian , Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034
-
[12]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[13]
Lewang Yuan , Yaoyao Peng , Zong-Jie Guan , Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086
-
[14]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
-
[15]
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
-
[16]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
-
[17]
Zhaoxuan ZHU , Lixin WANG , Xiaoning TANG , Long LI , Yan SHI , Jiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368
-
[18]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[19]
Shuhui Li , Rongxiuyuan Huang , Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028
-
[20]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(459)
- HTML views(31)