Citation: M. Y. Lee, J. S. Nam, J. H. Seo. Synthesis of Ni-CeO2 catalyst for the partial oxidation of methane using RF thermal plasma[J]. Chinese Journal of Catalysis, ;2016, 37(5): 743-749. doi: 10.1016/S1872-2067(15)61071-3 shu

Synthesis of Ni-CeO2 catalyst for the partial oxidation of methane using RF thermal plasma

  • Corresponding author: J. H. Seo, 
  • Received Date: 4 January 2016
    Available Online: 23 February 2016

  • Ni-CeO2 catalysts with a nickel content of 50 mol% were prepared using RF thermal plasma, and their catalytic activities for methane partial oxidation were characterized. For the synthesis of Ni-CeO2 catalysts, a precursor containing Ni (~5-μm diameter) and CeO2 (~200-nm diameter) powders were heated simultaneously using an RF plasma at a power level of ~52 kVA and a powder feeding rate of ~120 g/h. From the X-ray diffraction data and transmission electron microscopy images, the precursor formed into high crystalline CeO2 supports with nanosized Ni particles (< 50-nm diameter) on their surfaces. The catalytic performance was evaluated under atmospheric pressure at > 500 ℃ and a CH4:O2 molar ratio of 2:1 with Ar diluent. Although the Ni content was high (~50 mol%), the experimental results reveal a methane conversion rate of > 70%, selectivities of CO and H2 greater than 90% and slight carbon coking during an on-stream test at 550 ℃ for 24 h. However, at 750 ℃, the on-stream test revealed the formation of filament-like carbons with an increased methane conversion rate over 90%.
  • 加载中
    1. [1]

      [1] P. Proulx, J. Mostaghimi, M. I. Boulos, Plasma Chem. Plasma Process., 1987, 7, 29-52.

    2. [2]

      [2] S. L. Girshick, C. P. Chiu, R. Muno, C. Y. Wu, L. Yang, S. K. Singh, P. H. McMurry, J. Aerosol. Sci., 1993, 24, 367-382.

    3. [3]

      [3] D. Vollath, J. Nanopart. Res., 2008, 10(suppl. 1), 39-57.

    4. [4]

      [4] M. Shigeta, A. B. Murphy, J. Phys. D, 2011, 44, 174025/1-174025/16.

    5. [5]

      [5] J. H. Seo, B. G. Hong, Nucl. Eng.Technol., 2012, 44, 9-20.

    6. [6]

      [6] P. Fauchais, A. Vardelle, IEEE Trans. Plasma Sci., 1997, 25, 1258-1280.

    7. [7]

      [7] M. I. Boulos, P. Fauchais, E. Pfender, Thermal Plasmas: Fundamentals and Applications, Plenum Press, 1994.

    8. [8]

      [8] P. Bushier, H. Schubert, J. Uhlenbusch, M. Weiss, J. Thermal Spray Technol., 2001, 10, 666-672.

    9. [9]

      [9] H. Zea, C. K. Chen, K. Lester, A. Phillips, A. Datye, I. Fonseca, J. Phillips, Catal. Today, 2004, 89, 237-244.

    10. [10]

      [10] G. P. Vissokov, Catal. Today, 2004, 89, 245-251.

    11. [11]

      [11] V. Colombo, E. Ghedini, P. Sanibondi, Plasma Sources Sci. Technol., 2010, 19, 065024/1-065024/13.

    12. [12]

      [12] D. Bernardi, V. Colombo, E. Ghedini, A. Mentrelli, T. Trombetti, Eur. Phys. J. D, 2004, 28, 423-433.

    13. [13]

      [13] B. C. Enger, R. Lodeng, A. Holmen, Appl. Catal. A, 2008, 346, 1-27.

    14. [14]

      [14] S. Tang, J. Lin, K. L. Tan, Catal. Lett., 1998, 51, 169-175.

    15. [15]

      [15] E. Mamontov, T. Egami, R. Brezny, M. Koranne, S. Tyagi, J. Phys. Chem. B, 2000, 104, 11110-11116.

    16. [16]

      [16] J. B. Hu, C. L. Yu, Y. D. Bi, L. F. Wei, J. C. Chen, X. R. Chen, Chin. J. Catal., 2014, 35, 8-20.

    17. [17]

      [17] C. L. Yu, J. B. Hu, W. Q. Zhou, Q. Z. Fan, J. Energy Chem., 2014, 23, 235-243.

    18. [18]

      [18] M. Binnewies, E. Milke, Thermochemical Data of Elements and Compounds, 2nd ed., Wiley-VCH, Weinheim, Germany, 2002, 308.

    19. [19]

      [19] T. L. Zhu, M. Flytzani-Stephanopoulos, Appl. Catal. A, 2001, 208, 403-417.

    20. [20]

      [20] N. Y. Mendoza-Gonzalez, M. El-Morsli, P. Proulx, J. Therm. Spray Technol., 2008, 17, 533-550.

    21. [21]

      [21] S. Xu, X. L. Wang, Fuel, 2005, 84, 563-567.

    22. [22]

      [22] S. Pengpanich, V. Meeyoo, T. Rirksomboon, Catal. Today, 2004, 93, 95-105.

    23. [23]

      [23] J. K. Xu, W. Zhou, J. H. Wang, Z. J. Li, J. X. Ma, Chin. J. Catal., 2009, 30, 1076-1084.

  • 加载中
    1. [1]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    2. [2]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    3. [3]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    4. [4]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    5. [5]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    7. [7]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    8. [8]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    9. [9]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    10. [10]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    13. [13]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    14. [14]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    15. [15]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    16. [16]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    17. [17]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    18. [18]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    19. [19]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    20. [20]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

Metrics
  • PDF Downloads(0)
  • Abstract views(481)
  • HTML views(74)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return