Citation: Zhongkui Zhao, Guifang Ge, Weizuo Li, Xinwen Guo, Guiru Wang. Modulating the microstructure and surface chemistry of carbocatalysts for oxidative and direct dehydrogenation: A review[J]. Chinese Journal of Catalysis, ;2016, 37(5): 644-670. doi: 10.1016/S1872-2067(15)61065-8 shu

Modulating the microstructure and surface chemistry of carbocatalysts for oxidative and direct dehydrogenation: A review

  • Corresponding author: Zhongkui Zhao, 
  • Received Date: 13 January 2016
    Available Online: 22 February 2016

    Fund Project: 国家自然科学基金(21276041) (21276041)教育部新世纪优秀人才支持计划(NCET-12-0079) (NCET-12-0079)辽宁省自然科学基金(2015020200) (2015020200)中央高校基本科研业务费专项资金(DUT15LK41). (DUT15LK41)

  • The catalytic performance of solid catalysts depends on the properties of the catalytically active sites and their accessibility to reactants, which are significantly affected by the microstructure (morphology, shape, size, texture, and surface structure) and surface chemistry (elemental components and chemical states). The development of facile and efficient methods for tailoring the microstructure and surface chemistry is a hot topic in catalysis. This contribution reviews the state of the art in modulating the microstructure and surface chemistry of carbocatalysts by both bottom-up and top-down strategies and their use in the oxidative dehydrogenation (ODH) and direct dehydrogenation (DDH) of hydrocarbons including light alkanes and ethylbenzene to their corresponding olefins, important building blocks and chemicals like oxygenates. A concept of microstructure and surface chemistry tuning of the carbocatalyst for optimized catalytic performance and also for the fundamental understanding of the structure-performance relationship is discussed. We also highlight the importance and challenges in modulating the microstructure and surface chemistry of carbocatalysts in ODH and DDH reactions of hydrocarbons for the highly-efficient, energy-saving, and clean production of their corresponding olefins.
  • 加载中
    1. [1]

      [1] J. J. H. B. Sattler, J. Ruiz-Martinez, E. Santillan-Jimenez, B. M. Weckhuysen, Chem. Rev., 2014, 114, 10613-10653.

    2. [2]

      [2] C. A. Carrero, R. Schlögl, I. E. Wachs, R. Schomaecker, ACS Catal., 2014, 4, 3357-3380.

    3. [3]

      [3] F. Cavani, F. Trifiro, Appl. Catal. A, 1995, 133, 219-239.

    4. [4]

      [4] W. Qi, D. S. Su, ACS Catal., 2014, 4, 3212-3218.

    5. [5]

      [5] D. Chen, A. Holmen, Z. J. Sui, X. G. Zhou, Chin. J. Catal., 2014, 35, 824-841.

    6. [6]

      [6] L. M. Madeira, M. F. Portela, Catal. Rev.-Sci. Eng., 2002, 44, 247-286.

    7. [7]

      [7] M. S. Chen, M. C. White, Science, 2010, 327, 566-571.

    8. [8]

      [8] Y. H. Li, S. Das, S. L. Zhou, K. Junge, M. Beller, J. Am. Chem. Soc., 2012, 134, 9727-9732.

    9. [9]

      [9] Q. S. Gao, C. Giordano, M. Antonietti, Angew. Chem. Int. Ed., 2012, 51, 11740-11744.

    10. [10]

      [10] D. R. Dreyer, C. W. Bielawski, Chem. Sci., 2011, 2, 1233-1240.

    11. [11]

      [11] C. L. Su, K. P. Loh, Acc. Chem. Res., 2013, 46, 2275-2285.

    12. [12]

      [12] X. Y. Sun, R. Wang, D. S. Su, Chin. J. Catal., 2013, 34, 508-523.

    13. [13]

      [13] A. Schaetz, M. Zeltner, W. J. Stark, ACS Catal., 2012, 2, 1267-1284.

    14. [14]

      [14] M. A. Patel, F. X. Luo, M. R. Khoshi, E. Rabie, Q. Zhang, C. R. Flach, R. Mendelsohn, E Garfunkel, M. Szostak, H. He, ACS Nano, 2016, 10, 2305-2315.

    15. [15]

      [15] W. Qi, W. Liu, B. S. Zhang, X. M. Gu, X. L. Guo, D. S. Su, Angew. Chem. Int. Ed., 2013, 52, 14224-14228.

    16. [16]

      [16] Y. J. Gao, G. Hu, J. Zhong, Z. J. Shi, Y. S. Zhu, D. S. Su, J. G. Wang, X. H. Bao, D. Ma, Angew. Chem. Int. Ed., 2013, 52, 2109-2113.

    17. [17]

      [17] S. P. Pitre, C. D. McTiernan, H. Ismaili, J. C. Scaiano, J. Am. Chem. Soc., 2013, 135, 13286-13289.

    18. [18]

      [18] Y. Wang, X. C. Wang, M. Antonietti, Angew. Chem. Int. Ed., 2012, 51, 68-89.

    19. [19]

      [19] J. Bedia, R. Ruiz-Rosas, J. Rodríguez-Mirasol, T. Cordero, AIChE J., 2010, 56, 1557-1568.

    20. [20]

      [20] P. J. Ji, H. S. Tan, X. Xu, W. Feng, AIChE J., 2010, 56, 3005-3011.

    21. [21]

      [21] K. Schwinghammer, B. Tuffy, M. B. Mesch, E. Wirnhier, C. Martineau, F. Taulelle, W. Schnick, J. Senker, B. V. Lotsch, Angew. Chem. Int. Ed., 2013, 52, 2435-2439.

    22. [22]

      [22] M. Younessi-Sinaki, F. Hamdullahpur, AIChE J., 2014, 60, 2228-2234.

    23. [23]

      [23] M. Shalom, S. Inal, C. Fettkenhauer, D. Neher, M. Antonietti, J. Am. Chem. Soc., 2013, 135, 7118-7121.

    24. [24]

      [24] Y. S. Jun, E. Z. Lee, X. C. Wang, W. H. Hong, G. D. Stucky, A. Thomas, Adv. Funct. Mater., 2013, 23, 3661-3667.

    25. [25]

      [25] Y. Zheng, Y. Jiao, Y. L. Ge, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed., 2013, 52, 3110-3116.

    26. [26]

      [26] Y. Zhao, L. J. Yang, S. Chen, X. Z. Wang, Y. W. Ma, Q. Wu, Y. F. Jiang, W. J. Qian, Z. Hu, J. Am. Chem. Soc., 2013, 135, 1201-1204.

    27. [27]

      [27] K. Ai, Y. L. Liu, C. P. Ruan, L. H. Lu, G. Q. Lu, Adv. Mater., 2013, 25, 998-1003.

    28. [28]

      [28] H. Wang, K. Sun, F. Tao, D. J. Stacchiola, Y. H. Hu, Angew. Chem. Int. Ed., 2013, 52, 9210-9214.

    29. [29]

      [29] I. V. Lightcap, P. V. Kamat, Acc. Chem. Res., 2013, 46, 2235-2243.

    30. [30]

      [30] R. Schlögl, Adv. Catal., 2013, 56, 103-185.

    31. [31]

      [31] S. Navalon, A. Dhakshinamoorthy, M. Alvaro, H. Garcia, Chem. Rev., 2014, 114, 6179-6212.

    32. [32]

      [32] Y. Wang, X. C. Wang, M. Antonietti, Angew. Chem. Int. Ed., 2012, 51, 68-89.

    33. [33]

      [33] L. R. Radovic, C. Mora-Vilches, A. J. A. Salgado-Casanova, Chin. J. Catal., 2014, 35, 792-797.

    34. [34]

      [34] C. C. Huang, C. Li, G. Q. Shi, Energy Environ. Sci., 2012, 5, 8848-8868.

    35. [35]

      [35] X. K. Kong, C. L. Chen, Q. W. Chen, Chem. Soc. Rev., 2014, 43, 2841-2857.

    36. [36]

      [36] D. W. Wang, D. S. Su, Energy Environ. Sci., 2014, 7, 576-591.

    37. [37]

      [37] C. Ampelli, S. Perathoner, G. Centi, Chin. J. Catal., 2014, 35, 783-791.

    38. [38]

      [38] X. Y. Sun, R. Wang, D. S. Su, Chin. J. Catal., 2013, 34, 508.

    39. [39]

      [39] D. S. Su, J. Zhang, B. Frank, A. Thomas, X. C. Wang, J. Paraknowitsch, R. Schlögl, ChemSusChem, 2010, 3, 169-180.

    40. [40]

      [40] J. J. Vilatela, D. Eder, ChemSusChem, 2012, 5, 456-478.

    41. [41]

      [41] J. Zhu, A. Holmen, D. Chen, ChemCatChem, 2013, 5, 378-401.

    42. [42]

      [42] D. S. Su, S. Perathoner, G. Centi, Chem. Rev., 2013, 113, 5782-5816.

    43. [43]

      [43] A. Guerrero-Ruiz, I. Rodriguez-Ramos, Carbon, 1994, 32, 23-29.

    44. [44]

      [44] M. F. R. Pereira, J. M. Orfao, J. L. Figueiredo, Appl. Catal. A, 1999, 184, 153-160.

    45. [45]

      [45] H. Ba, S. Podila, Y. Liu, X. Mu, J.-M. Nhut, V. Papaefthimiou, S. Zafeiratos, P. Granger, C. Pham-Huu, Catal. Today, 2015, 249, 167-175.

    46. [46]

      [46] J. Zhang, X. Liu, R. Blume, A. Zhang, R. Schlögl and D. S. Su, Science, 2008, 322, 73-77.

    47. [47]

      [47] J. Zhang, D. S. Su, R. Blume, R. Schlögl, R. Wang, X. Yang, A. Gajović, Angew. Chem. Int. Ed., 2010, 49, 8640-8644.

    48. [48]

      [48] S. J. Guo, S. D. Zhang, S. Sun, Angew. Chem. Int. Ed., 2013, 52, 8526-8544.

    49. [49]

      [49] I. Lee, F. Delbecq, R. Morales, M. A. Albiter, F. Zaera, Nat. Mater., 2009, 8, 132-138.

    50. [50]

      [50] R. Krishna, Chem. Soc. Rev., 2012, 41, 3099-3118.

    51. [51]

      [51] F. Tao, Chem. Soc. Rev., 2012, 41, 7977-7979.

    52. [52]

      [52] Y. Li, W. Shen, Chem. Soc. Rev., 2014, 43, 1543-1574.

    53. [53]

      [53] W. X. Huang, Y. X. Gao, Catal. Sci. Technol., 2014, 4, 3772-3784.

    54. [54]

      [54] D. F. van der Vliet, C. Wang, D. Tripkovic, D. Strmcnik, X. F. Zhang, M. K. Debe, R. T. Atanasoski, N. M. Markovic, V. R. Stamenkovic, Nat. Mater., 2012, 11, 1051-1058.

    55. [55]

      [55] J. L. Gong, Chem. Rev., 2011, 112, 2987-3054.

    56. [56]

      [56] C. C. Lin, Y. Guo, J. Vela, ACS Catal., 2015, 5, 1037-1044.

    57. [57]

      [57] J. G. Yu, J. X. Low, W. Xiao, P. Zhou, M. Jaroniec, J. Am. Chem. Soc., 2014, 136, 8839-8842.

    58. [58]

      [58] Y. Zhao, C. Eley, J. P. Hu, J. S. Foord, L. Ye, H. W. He, S. C. E. Tsang, Angew. Chem. Int. Ed., 2012, 51, 3846-3849.

    59. [59]

      [59] C. L. Chen, J. Zhang, B. S. Zhang, C. L. Yu, F. Peng, D. S. Su, Chem. Commun., 2013, 49, 8151-8153.

    60. [60]

      [60] X. D. Hu, Y. T. Wu, H. R. Li, Z. B. Zhang, J. Phys. Chem. C, 2010, 114, 9603-9607.

    61. [61]

      [61] S. Mao, B. Li, D. S. Su, J. Mater. Chem. A, 2014, 2, 5287-5294.

    62. [62]

      [62] H. Xie, Z. L. Wu, S. H. Overbury, C. D. Liang, V. Schwartz, J. Catal., 2009, 267, 158-166.

    63. [63]

      [63] R. Huang, H. Y. Liu, B. S. Zhang, X. Y. Sun, C. H. Liang, D. S. Su, B. N. Zong, J. F. Rong, ChemSusChem, 2014, 7, 3476-3482.

    64. [64]

      [64] G. K. P. Dathar, Y. T. Tsai, K. Gierszal, Y. Xu, C. D. Liang, A. J. Rondinone, S. H. Overbury, V. Schwartz, ChemSusChem, 2014, 7, 483-491.

    65. [65]

      [65] R. C. Rao, M. Yang, Q. Ling, C. S. Li, Q. Y. Zhang, H. X. Yang, A. M. Zhang, Catal. Sci. Technol., 2014, 4, 665-671.

    66. [66]

      [66] I. Pelech, O. S. G. P. Soares, M. F. R. Pereira, J. L. Figueiredo, Catal Today, 2015, 249, 176-183.

    67. [67]

      [67] G. Mestl, N. I. Maksimova, N. Keller, V. V. Roddatis, R. Schlögl, Angew. Chem. Int. Ed., 2001, 40, 2066-2068.

    68. [68]

      [68] T. J. Zhao, W. Z. Sun, X. Y. Gu, M. Rønning, D. Chen, Y. C. Dai, W. K. Yuan, A. Holmen, Appl. Catal. A, 2007, 323, 135-146.

    69. [69]

      [69] P. Niebrzydowska, R. Janus, P. Kuśtrowski, S. Jarczewski, A. Wach, A. M. Silvestre-Albero, F. Rodríguez-Reinoso, Carbon, 2013, 64, 252-261.

    70. [70]

      [70] J. J. Delgado, X.-W. Chen, B. Frank, D. S. Su, R. Schlögl, Catal today, 2012, 186, 93-98.

    71. [71]

      [71] B. Frank, J. Zhang, R. Blume, R. Schlögl, D. S. Su, Angew. Chem. Int. Ed., 2009, 48, 6913-6917.

    72. [72]

      [72] J. Zhang, D. Su, A. Zhang, D. Wang, R. Schlögl, C. Hébert, Angew. Chem. Int. Ed., 2007, 119, 7319-7323.

    73. [73]

      [73] W. Qi, W. Liu, B. S. Zhang, X. M. Gu, X. L. Guo, D. S. Su, Angew. Chem. Int. Ed., 2013, 52, 14224-14228.

    74. [74]

      [74] S. B. Tang, Z. X. Cao, Phys. Chem. Chem. Phys., 2012, 14, 16558-16565.

    75. [75]

      [75] X. Y. Sun, B. Li, D. S. Su, Chem. Commun., 2014, 50, 11016-11019.

    76. [76]

      [76] X. Y. Sun, R. Wang, B. S. Zhang, R. Huang, X. Huang, D. S. Su, T. Chen, C. X. Miao, W. M. Yang, ChemCatChem, 2014, 6, 2270-2275.

    77. [77]

      [77] X. Y. Sun, Y. X. Ding, B. S. Zhang, R. Huang, D. Chen, D. S. Su, ACS Catal., 2015, 5, 2436-2444.

    78. [78]

      [78] X. Y. Sun, Y. X. Ding, B. S. Zhang, R. Huang, D. S. Su, Chem. Commun., 2015, 51, 9145-9148.

    79. [79]

      [79] B. Frank, S. Wrabetz, O. V. Khavryuchenko, R. Blume, A. Trunschke, R. Schlögl, ChemPhysChem, 2011, 12, 2709-2713.

    80. [80]

      [80] A. M. Zheng, Y. Y. Chu, S. H. Li, D. S. Su, F. Deng, Carbon, 2014, 77, 122-129.

    81. [81]

      [81] L. Liu, Q. F. Deng, B. Agula, X. Zhao, T. Z. Ren, Z. Y. Yuan, Chem. Commun., 2011, 47, 8334-8336.

    82. [82]

      [82] R. Wang, X. Y. Sun, B. S. Zhang, X. Y. Sun, D. S. Su, Chem. Eur. J., 2014, 20, 6324-6331.

    83. [83]

      [83] Z. K. Zhao, Y. T. Dai, G. F. Ge, G. R. Wang, Chem. Eur. J, 2015, 21, 8004-8009.

    84. [84]

      [84] Z. K. Zhao, Y. T. Dai, G. F. Ge, G. R. Wang, AIChE J., 2015, 61, 2543-2561.

    85. [85]

      [85] Z. Zhao, Y. T. Dai, G. F. Ge, Catal. Sci. Technol., 2015, 5, 1548-1557.

    86. [86]

      [86] T. T. Thanh, H. Ba, L. Truong-Phuoc, J.-M. Nhut, O. Ersen, D. Begin, I. Janowska, D. L. Nguyen, P. Granger, C. Pham-Huu, J. Mater. Chem. A, 2014, 2, 11349-11357.

    87. [87]

      [87] Z. K. Zhao, Y. T. Dai, J. Mater. Chem. A, 2014, 2, 13442-13451.

    88. [88]

      [88] Z. K. Zhao, Y. T. Dai, G. F. Ge, G. R. Wang, ChemCatChem, 2015, 7, 1135-1144.

    89. [89]

      [89] Z. K. Zhao, Y. T. Dai, J. H. Lin, G. R. Wang, Chem. Mater., 2014, 26, 3151-3161.

    90. [90]

      [90] L. Liu, Q. F. Deng, B. Agula, T. Z. Ren, Y.-P. Liu, B. Zhaorigetu, Z. Y. Yuan, Catal Today, 2012, 186, 35-41.

    91. [91]

      [91] L. Liu, Q. F. Deng, Y. P. Liu, T. Z. Ren, Z. Y. Yuan, Catal. Commun., 2011, 16, 81-85.

    92. [92]

      [92] X. Liu, D. S. Su, R. Schlögl, Carbon, 2008, 46, 547-549.

    93. [93]

      [93] X. Liu, B. Frank, W. Zhang, T. P. Cotter, R. Schlögl, D. S. Su, Angew. Chem. Int. Ed., 2011, 50, 3318-3322.

    94. [94]

      [94] D. Y. Jung, H. G. Jang, G. R. Kim, G. J. Kim, Res. Chem. Intermed., 2011, 37, 1145-1156.

    95. [95]

      [95] N. Keller, N. I. Maksimova, V. V. Roddatis, M. Schur, G. Mestl, Y. V. Butenko, V. L. Kuznetsov, R. Schlögl, Angew. Chem. Int. Ed., 2002, 41, 1885-1888.

    96. [96]

      [96] D. S. Su, N. Maksimova, J. J. Delgado, N. Keller, G. Mestl, M. J. Ledoux, R. Schlögl, Catal. Today, 2005, 102, 110-114.

    97. [97]

      [97] D. S. Su, J. J. Delgado, X. Liu, D. Wang, R. Schlögl, L. F. Wang, Z. Zhang, Z. Shan, F. S. Xiao, Chem. Asian J., 2009, 4, 1108-1113.

    98. [98]

      [98] V. Zarubina, H. Talebi, C. Nederlof, F. Kapteijn, M. Makkee, I. Melián-Cabrera, Carbon, 2014, 77, 329-340.

    99. [99]

      [99] M. F. R. Pereira, J. L. Figueiredo, J. J. Órfão, P. Serp, P. Kalck, Y. Kihn, Carbon, 2004, 42, 2807-2813.

    100. [100]

      [100] J. W. Diao, H. W. Liu, J. Wang, Z. B. Feng, T. Chen, C. X. Miao, W. M. Yang, D. S. Su, Chem. Commun., 2015, 51, 3423-3425.

    101. [101]

      [101] Z. J. Sui, T. J. Zhao, J. H. Zhou, P. Li, Y. C. Dai, Chin. J. Catal., 2005, 26, 521-526.

    102. [102]

      [102] M. F. R. Pereira, J. J. M. Órfão, J. L. Figueiredo, Carbon, 2002, 40, 2393-2401.

    103. [103]

      [103] I. Gniot, P. Kirszensztejn, M. Kozłowski, Appl. Catal. A, 2009, 362, 67-74.

    104. [104]

      [104] M. F. R. Pereira, J. J. M. Órfão, J. L.Figueiredo, Colloids Surf. A, 2004, 241, 165-171.

    105. [105]

      [105] A. Malaika, P. Rechnia, B. Krzyżyńska, M. Kozłowski, Microporous Mesoporous Mater., 2012, 163, 300-306.

    106. [106]

      [106] C. D. Liang, H. Xie, V. Schwartz, J. Howe, S. Dai, S. H. Overbury, J. Am. Chem. Soc., 2009, 131, 7735-7741.

    107. [107]

      [107] L. F. Wang, J. J. Delgado, B. Frank, Z. Zhang, Z. C. Shan, D. S. Su, F. S. Xiao, ChemSusChem, 2012, 5, 687-693.

    108. [108]

      [108] N. Xiao, Y. Zhou, Z. Ling, Z. B. Zhao, J. S. Qiu, Carbon, 2013, 60, 514-522.

    109. [109]

      [109] L. F. Wang, J. Zhang, D. S. Su, Y. Y. Ji, X. J. Cao, F. S. Xiao, Chem. Mater., 2007, 19, 2894-2897.

    110. [110]

      [110] J. J. Delgado, X. W. Chen, D. S. Su, S. B. A. Hamid, R. Schlögl, J. Nanosci. Nanotechnol., 2007, 7, 3495-3501.

    111. [111]

      [111] H. Yuan, Z. H. Sun, H. Y. Liu, B. S. Zhang, C. L. Chen, H. H. Wang, Z. M. Yang, J. S. Zhang, F. Wei, D. S. Su, ChemCatChem, 2013, 5, 1713-1717.

    112. [112]

      [112] J. J. Delgado, D. S. Su, G. Rebmann, N. Keller, A. Gajovic, R. Schlögl, J. Catal., 2006, 244, 126-129.

    113. [113]

      [113] J. Zhang, R. Wang, E. Z. Liu, X. F. Gao, Z. H. Sun, F. S. Xiao, F. Girgsdies, D. S. Su, Angew. Chem. Int. Ed., 2012, 51, 7581-7585.

    114. [114]

      [114] P. Li, T. Li, J. H. Zhou, Z. J. Sui, Y. C. Dai, W. K. Yuan, D. Chen, Microporous Mesoporous Mater., 2006, 95, 1-7.

    115. [115]

      [115] J. Wang, H. Y. Liu, J. Y. Diao, X. M. Gu, H. H. Wang, J. F. Rong, B. N. Zong, D. S. Su, J. Mater. Chem. A, 2015, 3, 2305-2313.

    116. [116]

      [116] Y. Ito, H. J. Qiu, T. Fujita, Y. Tanabe, K. Tanigaki, M. W. Chen, Adv. Mater., 2014, 26, 4145-4150.

    117. [117]

      [117] K. P. Gong, F. Du, Z. H. Xia, M. Durstock, L. M. Dai, Science, 2009, 323, 760-764.

    118. [118]

      [118] X. H. Li, M. Antonietti, Chem. Soc. Rev., 2013, 42, 6593-6604.

    119. [119]

      [119] H. B. Wang, T. Maiyalagan, X. Wang, ACS Catal., 2012, 2, 781-794.

    120. [120]

      [120] S. Zhang, P. Kang, S. Ubnoske, M. K. Brennaman, N. Song, R. L. House, J. T. Glass, T. J. Meyer, J. Am. Chem. Soc., 2014, 136, 7845-7848.

    121. [121]

      [121] M. Park, J. Ryu, Y. Kim, J. Cho, Energy Environ. Sci., 2014, 7, 3727-3735.

    122. [122]

      [122] L. F. Velasco, J. C. Lima, C. Ania, Angew. Chem. Int. Ed., 2014, 53, 4146-4148.

    123. [123]

      [123] K. N. Wood, R. O'Hayre, S. Pylypenko, Energy Environ. Sci., 2014, 7, 1212-1249.

    124. [124]

      [124] W. J. Lee, U. N. Maiti, J. M. Lee, J. Lim, T. H. Han, S. O. Kim, Chem. Commun., 2014, 50, 6818-6830.

    125. [125]

      [125] Z. H. Sheng, L. Shao, J. J. Chen, W. J. Bao, F. B. Wang, X. H. Xia, ACS Nano, 2011, 5, 4350-4358.

    126. [126]

      [126] J. T. Jin, X. G. Fu, Q. Liu, Y. R. Liu, Z. Y. Wei, K. X. Niu, J. Y. Zhang, ACS Nano, 2013, 7, 4764-4773.

    127. [127]

      [127] Z. Y. Lin, G. Waller, Y. Liu, M. L. Liu, C. P. Wong, Adv. Energy Mater., 2012, 2, 884-888.

    128. [128]

      [128] Z. K. Zhao, Y. T. Dai, G. F. Ge, X. W. Guo, G. R. Wang, Phys. Chem. Chem. Phys., 2015, 17, 18895-18899.

    129. [129]

      [129] Z. K. Zhao, Y. T. Dai, G. F. Ge, X. W. Guo, G. R. Wang, RSC Adv., 2015, 5, 53095-53099.

    130. [130]

      [130] Z. K. Zhao, Y. T. Dai, G. F. Ge, X. W. Guo, G. R. Wang, Green Chem., 2015, 17, 3723-3727.

    131. [131]

      [131] Z. K. Zhao, Y. T. Dai, G. F. Ge, Q. Mao, Z. M. Rong, G. R. Wang, ChemCatChem, 2015, 7, 1070-1077.

    132. [132]

      [132] C. Duong-Viet, H. Ba, Y. F. Liu, L. Truong-Phuoc, J. M. Nhut, C. Pham-Huu, Chin. J. Catal., 2014, 35, 906-913.

    133. [133]

      [133] H. Ba, Y. F. Liu, X. K. Mu, W. H. Doh, J. M. Nhut, P. Granger, C. Pham-Huu, Appl. Catal. A, 2015, 499, 217-226.

    134. [134]

      [134] H. Y. Liu, J. Y. Diao, Q. Wang, S. Y. Gu, T. Chen, C. X. Miao, W. M. Yang, D. S. Su, Chem. Commun., 2014, 50, 7810-7812.

    135. [135]

      [135] X. Y. Sun, R. Wang, B. S. Zhang, R. Huang, X. Huang, D. S. Su, T. Chen, C. X. Miao, W. M. Yang, ChemCatChem, 2014, 6, 2270-2275.

    136. [136]

      [136] J. J. Delgado, X. Chen, J. P. Tessonnier, M. E. Schuster, E. Del Rio, R. Schlögl, D. S. Su, Catal. Today, 2010, 150, 49-54.

    137. [137]

      [137] R. Huang, C. H. Liang, D. S. Su, B. Zong, J. F. Rong, Catal. Today, 2015, 249, 161-166.

    138. [138]

      [138] A. Rinaldi, J. Zhang, B. Frank, D. S. Su, S. B. Abd Hamid, R. Schlögl, ChemSusChem, 2010, 3, 254-260.

    139. [139]

      [139] M. F. R. Pereira, J. J. M. Orfao, J. L. Figueiredo, Appl. Catal. A, 1999, 184, 153-160.

    140. [140]

      [140] J. d. J. D. Velásquez, L. M. C. Suárez, J. L. Figueiredo, Appl. Catal. A, 2006, 311, 51-57.

    141. [141]

      [141] N. V. Qui, P. Scholz, T. F. Krech, T. Keller, K. Pollok, B. Ondruschka, Catal. Commun., 2011, 12, 464-469.

    142. [142]

      [142] D. S. Su, N. I. Maksimova, G. Mestl, V. L. Kuznetsov, V. Keller, R. Schlögl, N. Keller, Carbon, 2007, 45, 2145-2151.

    143. [143]

      [143] P. Janus, R. Janus, P. Kuśtrowski, S. Jarczewski, A. Wach, A. M. Silvestre-Albero, F. Rodríguez-Reinoso, Catal. Today, 2014, 235, 201-209.

    144. [144]

      [144] Z. J. Sui, J. H. Zhou, Y. C. Dai, W. K. Yuan, Catal. Today, 2005, 106, 90-94.

    145. [145]

      [145] Y. Marco, L. Roldán, E. Muñoz, E. García-Bordejé, ChemSusChem, 2014, 7, 2496-2504.

    146. [146]

      [146] V. Schwartz, H. Xie, H. M. Meyer, S. H. Overbury, C. D. Liang, Carbon, 2011, 49, 659-668.

    147. [147]

      [147] J. Y. Diao, H. Y. Liu, Z. B. Feng, Y. J.Zhang, T. Chen, C. X. Miao, W. M. Yang, D. S. Su, Catal. Sci. Technol., 2015, 5, 4950-4953.

    148. [148]

      [148] Z. K. Zhao, W. Z. Li, Y. T. Dai, G. F. Ge, X. W. Guo, G. R. Wang, ACS Sust. Chem. Eng., 2015, 3, 3355-3364.

    149. [149]

      [149] H. Ba, L. Truong-Phuoc, Y. F. Liu, C. Duong-Viet, J. M. Nhut, L. Nguyen-Dinh, P. Granger, C. Pham-Huu, Carbon, 2016, 96, 1060-1069.

  • 加载中
    1. [1]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    2. [2]

      Zhenxing Liu Jiaen Hu Zishi Cheng Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107

    3. [3]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    4. [4]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    5. [5]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    6. [6]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    7. [7]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    8. [8]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    9. [9]

      Yuan Chun Yongmei Liu Fuping Tian Hong Yuan Shu'e Song Wanchun Zhu Yunchao Li Zhongyun Wu Xiaokui Wang Yunshan Bai Li Wang Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Colloidal and Surface Chemical Properties, Molecular Structure and Properties. University Chemistry, 2025, 40(5): 178-188. doi: 10.12461/PKU.DXHX202503053

    10. [10]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    11. [11]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    12. [12]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    13. [13]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    14. [14]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    15. [15]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    16. [16]

      Xunzhang Fan Yuanjin Zhao Shufang Luo Aihua He . Karl Ziegler: A Pioneer in the Polyolefin Industry – Commemorating the 50th Anniversary of the German Chemist’s Passing. University Chemistry, 2024, 39(8): 389-394. doi: 10.3866/PKU.DXHX202312065

    17. [17]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    18. [18]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    19. [19]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

    20. [20]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

Metrics
  • PDF Downloads(1)
  • Abstract views(759)
  • HTML views(81)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return