Citation: Chen Zhang, Tao Wang, Xiao Liu, Yunjie Ding. Selective oxidation of glycerol to lactic acid over activated carbon supported Pt catalyst in alkaline solution[J]. Chinese Journal of Catalysis, ;2016, 37(4): 502-509. doi: 10.1016/S1872-2067(15)61055-5 shu

Selective oxidation of glycerol to lactic acid over activated carbon supported Pt catalyst in alkaline solution

  • Corresponding author: Tao Wang,  Yunjie Ding, 
  • Received Date: 6 January 2016
    Available Online: 30 January 2016

    Fund Project: 国家自然科学基金(21176236). (21176236)

  • Pt/activated carbon (Pt/AC) catalyst combined with base works efficiently for lactic acid production from glycerol under mild conditions. Base type (LiOH, NaOH, KOH, or Ba(OH)2) and base/glycerol molar ratio significantly affected the catalytic performance. The corresponding lactic acid selectivity was in the order of LiOH > NaOH > KOH > Ba(OH)2. An increase in LiOH/glycerol molar ratio elevated the glycerol conversion and lactic acid selectivity to some degree, but excess LiOH inhibited the transformation of glycerol to lactic acid. In the presence of Pt/AC catalyst, the maximum selectivity of lactic acid was 69.3% at a glycerol conversion of 100% after 6 h at 90 ℃, with a LiOH/glycerol molar ratio of 1.5. The Pt/AC catalyst was recycled five times and was found to exhibit slightly decreased glycerol conversion and stable lactic acid selectivity. In addition, the experimental results indicated that reaction intermediate dihydroxyacetone was more favorable as the starting reagent for lactic acid formation than glyceraldehyde. However, the Pt/AC catalyst had adverse effects on the intermediate transformation to lactic acid, because it favored the catalytic oxidation of them to glyceric acid.
  • 加载中
    1. [1]

      [1] B. Katryniok, H. Kimura, E. Skrzyńska, J. S. Girardon, P. Fongarland, M. Capron, R. Ducoulombier, N. Mimura, S. Paul, F. Dumeignil, Green Chem., 2011, 13, 1960-1979.

    2. [2]

      [2] C. H. Zhou, J. N. Beltramini, Y. X. Fan, G. Q. Lu, Chem. Soc. Rev., 2008, 37, 527-549.

    3. [3]

      [3] Y. H. Shen, S. H. Zhang, H. J. Li, Y. Ren, H. C. Liu, Chem.-Eur. J., 2010, 16, 7368-7371.

    4. [4]

      [4] S. S. Chen, P. Y. Qi, J. Chen, Y. Z. Yuan, RSC Adv., 2015, 5, 31566-31574.

    5. [5]

      [5] J. Y. Cai, H. Ma, J. J. Zhang, Z. T. Du, Y. Z. Huang, J. Gao, J. Xu, Chin. J. Catal., 2014, 35, 1653-1660.

    6. [6]

      [6] L. F. Gong, Y. Lu, Y. J. Ding, R. H. Lin, J. W. Li, W. D. Dong, T. Wang, W. M. Chen, Appl. Catal. A, 2010, 390, 119-126.

    7. [7]

      [7] Y. L. Wang, W. P. Deng, B. J. Wang, Q. H. Zhang, X. Y. Wan, Z. C. Tang, Y. Wang, C. Zhu, Z. X. Cao, G. C. Wang, H. L. Wan, Nat. Commun., 2013, 4, 2141.

    8. [8]

      [8] M. Dusselier, P. Van Wouwe, A. Dewaele, E. Makshina, B. F. Sels, Energy Environ. Sci., 2013, 6, 1415-1442.

    9. [9]

      [9] R. P. John, K. M. Nampoothiri, A. Pandey, Appl. Microbiol. Biotechnol., 2007, 74, 524-534.

    10. [10]

      [10] H. Kishida, F. M. Jin, Z. Y. Zhou, T. Moriya, H. Enomoto, Chem. Lett., 2005, 34, 1560-1561.

    11. [11]

      [11] Z. Shen, F. M. Jin, Y. L. Zhang, B. Wu, A. Kishita, K. Tohji, H. Kishida, Ind. Eng. Chem. Res., 2009, 48, 8920-8925.

    12. [12]

      [12] L. S. Sharninghausen, J. Campos, M. G. Manas, R. H. Crabtree, Nat. Commun., 2014, 5, 5084.

    13. [13]

      [13] E. P. Maris, R. J. Davis, J. Catal., 2007, 249, 328-337.

    14. [14]

      [14] J. Feng, W. Xiong, B. Xu, W. D. Jiang, J. B. Wang, H. Chen, Catal. Commun., 2014, 46, 98-102.

    15. [15]

      [15] P. Lakshmanan, P. P. Upare, N. T. Le, Y. K. Hwang, D. W. Hwang, U. H. Lee, H. R. Kim, J. S. Chang, Appl. Catal. A, 2013, 468, 260-268.

    16. [16]

      [16] R. K. P. Purushothaman, J. van Haveren, D. S. van Es, I. Melián Cabrera, J. D. Meeldijk, H. J. Heeres, Appl. Catal. B, 2014, 147, 92-100.

    17. [17]

      [17] S. Chornaja, K. Dubencov, V. Kampars, O. Stepanova, S. Zhizhkun, V. Serga, L. Kulikova, React. Kinet., Mech. Catal., 2013, 108, 341-357.

    18. [18]

      [18] W. C. Ketchie, Y. L. Fang, M. S. Wong, M. Murayama, R. J. Davis, J. Catal., 2007, 250, 94-101.

    19. [19]

      [19] Y. Ryabenkova, P. J. Miedziak, N. F. Dummer, S. H. Taylor, N. Dimitratos, D. J. Willock, D. Bethell, D. W. Knight, G. J. Hutchings, Top. Catal., 2012, 55, 1283-1288.

    20. [20]

      [20] P. M. Sipos, G. Hefter, P. M. May, J. Chem. Eng. Data, 2000, 45, 613-617.

    21. [21]

      [21] W. Jin, H. Du, S. L. Zheng, H. B. Xu, Y. Zhang, J. Phys. Chem. B, 2010, 114, 6542-6548.

    22. [22]

      [22] D. Liang, J. Gao, J. H. Wang, P. Chen, Z. Y. Hou, X. M. Zheng, Catal. Commun., 2009, 10, 1586-1590.

    23. [23]

      [23] D. Wang, W. Q. Niu, M. H. Tan, M. B. Wu, X. J. Zheng, Y. P. Li, N. Tsubaki, ChemSusChem, 2014, 7, 1398-1406.

    24. [24]

      [24] S. E. Davis, M. S. Ide, R. J. Davis, Green Chem., 2013, 15, 17-45.

    25. [25]

      [25] S. S. Liu, K. Q. Sun, B. Q. Xu, ACS Catal., 2014, 4, 2226-2230.

    26. [26]

      [26] D. Liang, J. Gao, H. Sun, P. Chen, Z. Y. Hou, X. M. Zheng, Appl. Catal. B, 2011, 106, 423-432.

    27. [27]

      [27] S. Lux, M. Siebenhofer, Catal. Sci. Technol., 2013, 3, 1380-1385.

    28. [28]

      [28] C. B. Rasrendra, B. A. Fachri, I. G. B. N. Makertihartha, S. Adisasmito, H. J. Heeres, ChemSusChem, 2011, 4, 768-777.

    29. [29]

      [29] H. Kishida, F. M. Jin, X. Y. Yan, T. Moriya, H. Enomoto, Carbohydr. Res., 2006, 341, 2619-2623.

    30. [30]

      [30] G. L. Lookhart, M. S. Feather, Carbohydr. Res., 1978, 60, 259-265.

    31. [31]

      [31] D. R. Lide, W. M. Haynes, G. Baysinger, L. I. Berger, M. Frenkel, R. N. Goldberg, CRC Handbook of Chemistry and Physics, vol. 8, 90th (CD-ROM Version) ed., CRC Press/Taylor and Francis, Boca Raton, FL, 2010.

    32. [32]

      [32] R. D. Shannon, Acta Crystallogr., Sect. A, 1976, 32, 751-767.

    33. [33]

      [33] R. Battino, T. R. Rettich, T. Tominaga, J. Phys. Chem. Ref. Data, 1983, 12, 163-178.

    34. [34]

      [34] B. N. Zope, D. D. Hibbitts, M. Neurock, R. J. Davis, Science, 2010, 330, 74-78.

    35. [35]

      [35] K. E. Gubbins, R. D. Walker Jr, J. Electrochem. Soc., 1965, 112, 469-471.

    36. [36]

      [36] N. Worz, A. Brandner, P. Claus, J. Phys. Chem. C, 2010, 114, 1164-1172.

    37. [37]

      [37] T. Mallat, A. Baiker, Chem. Rev., 2004, 104, 3037-3058.

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    3. [3]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    4. [4]

      Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081

    5. [5]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    6. [6]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    7. [7]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

    8. [8]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    9. [9]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    10. [10]

      Xiaoxuan Yu Wukun Liu . Practice of Ideological and Political Education in Medicinal Chemistry for Pharmacy Administration Major: A Case Study on the Discovery of Cisplatin’s Anticancer Function. University Chemistry, 2025, 40(4): 408-414. doi: 10.12461/PKU.DXHX202405200

    11. [11]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    12. [12]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    13. [13]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    14. [14]

      Xiaotong LUPan ZHANGZijie ZHAOLei HUANGHongwei ZUOLili LIANG . Antitumor and antibacterial activities of pyridyl Schiff base indium and dysprosium complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1523-1532. doi: 10.11862/CJIC.20250073

    15. [15]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    16. [16]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    17. [17]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    18. [18]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    19. [19]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    20. [20]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

Metrics
  • PDF Downloads(1)
  • Abstract views(468)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return