Citation: Jianqiang Zhang, Yongsheng Peng, Wenguang Leng, Yanan Gao, Feifei Xu, Jinling Chai. Nitrogen ligands in two-dimensional covalent organic frameworks for metal catalysis[J]. Chinese Journal of Catalysis, ;2016, 37(4): 468-475. doi: 10.1016/S1872-2067(15)61050-6 shu

Nitrogen ligands in two-dimensional covalent organic frameworks for metal catalysis

  • Corresponding author: Wenguang Leng,  Jinling Chai, 
  • Received Date: 9 December 2015
    Available Online: 18 January 2016

    Fund Project: 国家自然科学基金(21473196, 21403214) (21473196, 21403214) 大连理工大学精细化工国家重点实验室(KF1415). (KF1415)

  • We introduced bipyridine ligands into a series of two-dimensional (2D) covalent organic frameworks (COFs) using 2,2'-bipyridine-5,5'-dicarbaldehyde (2,2'-BPyDCA) as a component in the mixed building blocks. The framework of the COFs was formed by the linkage of imine groups. The ligand content in the COFs was synthetically tuned by the content of 2,2'-BPyDCA, and thus the amount of metal, palladium(II) acetate, bonded to the nitrogen ligands could be manipulated. Both the bipyridine ligands and imine groups can coordinate with Pd(II) ions, but the loading position can be varied, with one ligand favoring binding in the space between adjacent COFs' layers and the other ligand favoring binding within the pores of the COFs. The Pd(II)-loaded COFs exhibited good catalytic activity for the Heck reaction.
  • 加载中
    1. [1]

      [1] A. P. Côté, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, O. M. Yaghi, Science, 2005, 310, 1166-1170.

    2. [2]

      [2] H. M. El-Kaderi, J. R. Hunt, J. L. Mendoza-Cortés, A. P. Côté, R. E. Taylor, M. O'Keeffe, O. M. Yaghi, Science, 2007, 316, 268-272.

    3. [3]

      [3] X. Feng, X. S. Ding, D. L. Jiang, Chem. Soc. Rev., 2012, 41, 6010-6022.

    4. [4]

      [4] S. Y. Ding, W. Wang, Chem. Soc. Rev., 2013, 42, 548-568.

    5. [5]

      [5] S. Y. Ding, J. Gao, Q. Wang, Y. Zhang, W. G. Song, C. Y. Su, W. Wang, J. Am. Chem. Soc., 2011, 133, 19816-19822.

    6. [6]

      [6] H. Xu, X. Chen, J. Gao, J. B. Lin, M. Addicoat, S. Irle, D. L. Jiang, Chem. Commun., 2014, 50, 1292-1294.

    7. [7]

      [7] P. Pachfule, S. Kandambeth, D. D. Díaz, R. Banerjee, Chem. Commun., 2014, 50, 3169-3172.

    8. [8]

      [8] P. Pachfule, M. K. Panda, S. Kandambeth, S. M. Shivaprasad, D. D. Díaz, R. Banerjee, J. Mater. Chem. A, 2014, 2, 7944-7952.

    9. [9]

      [9] Q. R. Fang, S. Gu, J. Zheng, Z. B. Zhuang, S. L. Qiu, Y. S. Yan, Angew. Chem. Int. Ed., 2014, 53, 2878-2882.

    10. [10]

      [10] S. S. Han, H. Furukawa, O. M. Yaghi, W. A. Goddard III, J. Am. Chem. Soc., 2008, 130, 11580-11581.

    11. [11]

      [11] H. Furukawa, O. M. Yaghi, J. Am. Chem. Soc., 2009, 131, 8875-8883.

    12. [12]

      [12] C. J. Doonan, D. J. Tranchemontagne, T. G. Glover, J. R. Hunt, O. M. Yaghi, Nat. Chem., 2010, 2, 235-238.

    13. [13]

      [13] H. P. Ma, H. Ren, S. Meng, Z. J. Yan, H. Y. Zhao, F. X. Sun, G. S. Zhu, Chem. Commun., 2013, 49, 9773-9775.

    14. [14]

      [14] M. G. Rabbani, A. K. Sekizkardes, Z. Kahveci, T. E. Reich, R. S. Ding, H. M. El-Kaderi, Chem. Eur. J., 2013, 19, 3324-3328.

    15. [15]

      [15] S. Dalapati, S. B. Jin, J. Gao, Y. H. Xu, A. Nagai, D. L. Jiang, J. Am. Chem. Soc., 2013, 135, 17310-17313.

    16. [16]

      [16] J. Zhang, L. B. Wang, N. Li, J. F. Liu, W. Zhang, Z. B. Zhang, N. C. Zhou, X. L. Zhu, CrystEngComm, 2014, 16, 6547-6551.

    17. [17]

      [17] S. Wan, J. Guo, J. Kim, H. Ihee, D. L. Jiang, Angew. Chem. Int. Ed., 2008, 47, 8826-8830.

    18. [18]

      [18] S. Wan, J. Guo, J. Kim, H. Ihee, D. L. Jiang, Angew. Chem. Int. Ed., 2009, 48, 5439-5442.

    19. [19]

      [19] X. Feng, L. Chen, Y. Honsho, O. Saengsawang, L. L. Liu, L. Wang, A. Saeki, S. Irle, S. Seki, Y. P. Dong, D. L. Jiang, Adv. Mater., 2012, 24, 3026-3031.

    20. [20]

      [20] E. L. Spitler, J. W. Colson, F. J. Uribe-Romo, A. R. Woll, M. R. Giovino, A. Saldivar, W. R. Dichtel, Angew. Chem. Int. Ed., 2012, 51, 2623-2627.

    21. [21]

      [21] M. Dogru, M. Handloser, F. Auras, T. Kunz, D. Medina, A. Hartschuh, P. Knochel, T. Bein, Angew. Chem. Int. Ed., 2013, 52, 2920-2924.

    22. [22]

      [22] L. Chen, K. Furukawa, J. Gao, A. Nagai, T. Nakamura, Y. P. Dong, D. L. Jiang, J. Am. Chem. Soc., 2014, 136, 9806-9809.

    23. [23]

      [23] C. R. DeBlase, K. E. Silberstein, T. T. Truong, H. D. Abruña, W. R. Dichtel, J. Am. Chem. Soc., 2013, 135, 16821-16824.

    24. [24]

      [24] L. Stegbauer, K. Schwinghammer, B. V. Lotsch, Chem. Sci., 2014, 5, 2789-2793.

    25. [25]

      [25] N. L. Campbell, R. Clowes, L. K. Ritchie, A. I. Cooper, Chem. Mater., 2009, 21, 204-206.

    26. [26]

      [26] B. P. Biswal, S. Chandra, S. Kandambeth, B. Lukose, T. Heine, R. Banerjee, J. Am. Chem. Soc., 2013, 135, 5328-5331.

    27. [27]

      [27] J. W. Colson, A. R. Woll, A. Mukherjee, M. P. Levendorf, E. L. Spitler, V. B. Shields, M. G. Spencer, J. Park, W. R. Dichtel, Science, 2011, 332, 228-231.

    28. [28]

      [28] X. H. Liu, C. Z. Guan, S. Y. Ding, W. Wang, H. J. Yan, D. Wang, L. J. Wan, J. Am. Chem. Soc., 2013, 135, 10470-10474.

    29. [29]

      [29] N. A. A. Zwaneveld, R. Pawlak, M. Abel, D. Catalin, D. Gigmes, D. Bertin, L. Porte, J. Am. Chem. Soc., 2008, 130, 6678-6679.

    30. [30]

      [30] X. Chen, N. Huang, J. Gao, H. Xu, F. Xu, D. L. Jiang, Chem. Commun., 2014, 50, 6161-6163.

    31. [31]

      [31] A. P. Côté, H. M. El-Kaderi, H. Furukawa, J. R. Hunt, O. M. Yaghi, J. Am. Chem. Soc., 2007, 129, 12914-12915.

    32. [32]

      [32] L. M. Lanni, R. W. Tilford, M. Bharathy, J. J. Lavigne, J. Am. Chem. Soc., 2011, 133, 13975-13983.

    33. [33]

      [33] P. Kuhn, M. Antonietti, A. Thomas, Angew. Chem. Int. Ed., 2008, 47, 3450-3453.

    34. [34]

      [34] F. J. Uribe-Romo, J. R. Hunt, H. Furukawa, C. Klöck, M. O'Keeffe, O. M. Yaghi, J. Am. Chem. Soc., 2009, 131, 4570-4571.

    35. [35]

      [35] F. J. Uribe-Romo, C. J. Doonan, H. Furukawa, K. Oisaki, O. M. Yaghi, J. Am. Chem. Soc., 2011, 133, 11478-11481.

    36. [36]

      [36] S. Kandambeth, A. Mallick, B. Lukose, M. V. Mane, T. Heine, R. Banerjee, J. Am. Chem. Soc., 2012, 134, 19524-19527.

    37. [37]

      [37] L. Y. Chen, S. Rangan, J. Li, H. F. Jiang, Y. W. Li, Green Chem., 2014, 16, 3978-3985.

    38. [38]

      [38] E. D. Bloch, D. Britt, C. Lee, C. J. Doonan, F. J. Uribe-Romo, H. Furukawa, J. R. Long, O. M. Yaghi, J. Am. Chem. Soc., 2010, 132, 14382-14384.

    39. [39]

      [39] A. Nagai, Z. Q. Guo, X. Feng, S. B. Jin, X. Chen, X. S. Ding, D. L. Jiang, Nat. Commun., 2011, 2, 536.

    40. [40]

      [40] J. Hodačová, M. Budĕšínský, Org. Lett., 2007, 9, 5641-5643.

    41. [41]

      [41] M. G. Rabbani, A. K. Sekizkardes, O. M. El-Kadri, B. R. Kaafarani, H. M. El-Kaderi, J. Mater. Chem., 2012, 22, 25409-25417.

    42. [42]

      [42] X. Chen, M. Addicoat, S. Irle, A. Nagai, D. L. Jiang, J. Am. Chem. Soc., 2013, 135, 546-549.

    43. [43]

      [43] The molecular size was determined by Material Studio Geometry Optimization.

    44. [44]

      [44] N. Huang, Y. H. Xu, D. L. Jiang, Sci. Rep., 2014, 4, 7228.

  • 加载中
    1. [1]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    2. [2]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    3. [3]

      Yueshuai Xu Wei Liu Xudong Chen Zhikun Zheng . 水相中制备共价有机框架单晶的实验教学设计. University Chemistry, 2025, 40(6): 256-265. doi: 10.12461/PKU.DXHX202408045

    4. [4]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    5. [5]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    6. [6]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    7. [7]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    8. [8]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    9. [9]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    10. [10]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    11. [11]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    12. [12]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    13. [13]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    14. [14]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    15. [15]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    16. [16]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    17. [17]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    18. [18]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    19. [19]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    20. [20]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

Metrics
  • PDF Downloads(0)
  • Abstract views(845)
  • HTML views(153)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return