Citation: Ángela García Solaesa, María Teresa Sanz, Sagrario Beltrán, Rodrigo Melgosa. Kinetic study and kinetic parameters of lipase-catalyzed glycerolysis of sardine oil in a homogeneous medium[J]. Chinese Journal of Catalysis, ;2016, 37(4): 596-606. doi: 10.1016/S1872-2067(15)61040-3 shu

Kinetic study and kinetic parameters of lipase-catalyzed glycerolysis of sardine oil in a homogeneous medium

  • Corresponding author: María Teresa Sanz, 
  • Received Date: 18 November 2015
    Available Online: 4 January 2016

  • The production of polyunsaturated fatty acids (PUFAs) concentrates by enzymatic catalysis has gained interest due to their stereospecificity and the milder conditions employed compared to the use of inorganic catalysts. The enzymatic glycerolysis of sardine oil by Lipozyme® 435 to get PUFA concentrates in the forms of di- and monoacylglycerols (DAGs, MAGs) in an optimized amount of tert-butanol as the organic solvent was studied. First, mass transfer limitation of the reaction system was analyzed. The effects of different operating variables such as lipase loading, temperature and feed composition were investigated. A semi-empirical kinetic model based on the reversible elementary reactions of glycerolysis and hydrolysis of the glycerides was employed to correlate the experimental kinetic data. A molar ratio glycerol:oil of 3:1 was the optimum, which produced more than 84 wt% of MAG at 323 K. A comparison with other glycerolysis systems was performed using MAG yield, reaction rate and significance of kinetic parameters.
  • 加载中
    1. [1]

      [1] E. A. M. De Deckere, O. Korver, P. M. Verschuren, M. B. Katan, Eur. J. Clin. Nutr., 1998, 52, 749-753.

    2. [2]

      [2] P. M. Kris-Etherton, W. S. Harris, L. J. Appel, Circulation, 2002, 106, 2747-2757.

    3. [3]

      [3] P. D. Nichols, A. McManus, K. Krail, A. J. Sinclair, M. Miller, Nutrients, 2014, 6, 3727-3733.

    4. [4]

      [4] E. M. Hernandez, Lipid. Technol., 2014, 26, 103-106.

    5. [5]

      [5] L. D. Lawson, B. G. Hughes, Biochem. Biophys. Res. Commun., 1988, 152, 328-335.

    6. [6]

      [6] N. J. Zhong, L. Li, X. B. Xu, L. Z. Cheong, B. Li, S. Q. Hu, X. H. Zhao, J. Am. Oil. Chem. Soc., 2009, 86, 783-789.

    7. [7]

      [7] U. T. Bornscheuer, Enzyme Microb. Technol., 1995, 17, 578-586.

    8. [8]

      [8] M. L. Damstrup, T. Jensen, F. V. Sparsø, S. Z. Kiil, A. D. Jensen, X. Xu, J. Am. Oil Chem. Soc., 2005, 82, 559-564.

    9. [9]

      [9] P. H. L. Moquin, F. Temelli, J. W. King, M. M. Palcic, J. Am. Oil Chem. Soc., 2005, 82, 613-617.

    10. [10]

      [10] Z. Guo, X. B. Xu, Green Chem., 2006, 8, 54-62.

    11. [11]

      [11] A. Valério, R. L. Krüger, J. Ninow, F. C. Corazza, D. De Oliveira, J. Vladimir Oliveira, M. L. Corazza, J. Agric. Food Chem., 2009, 57, 8350-8356.

    12. [12]

      [12] K. G. Fiametti, M. K. Ustra, D. De Oliveira, M. L. Corazza, A. Furigo Jr, J. Vladimir Oliveira, Ultrason. Sonochem., 2012, 19, 440-451.

    13. [13]

      [13] Á. G. Solaesa, S. L. Bucio, M. T. Sanz, S. Beltrán, S. Rebolleda, Fluid Phase Equilib., 2013, 356, 284-290.

    14. [14]

      [14] M. L. Damstrup, J. Abildskov, S. Kiil, A. D. Jensen, F. V. Sparsø, X. B. Xu, J. Agric. Food Chem., 2006, 54, 7113-7119.

    15. [15]

      [15] Á. G. Solaesa, M. T. Sanz, M. Falkeborg, S. Beltrán, Z. Guo, Food Chem., 2016, 190, 960-967.

    16. [16]

      [16] R. L. Krüger, A. Valério, M. Balen, J. L. Ninow, J. Vladimir Oliveira, D. de Oliveira, M. L. Corazza, Eur. J. Lipid Sci. Technol., 2010, 112, 921-927.

    17. [17]

      [17] F. Voll, R. L. Krüger, F. de Castilhos, L. Cardozo Filho, V. Cabral, J. Ninow, M. L. Corazza, Biochem. Eng. J., 2011, 56, 107-115.

    18. [18]

      [18] N. Majid, B. Cheirsilp, Int. J. Food Sci. Technol., 2012, 47, 793-800.

    19. [19]

      [19] F. K. Zeng, B. Yang, Y. H. Wang, W. F. Wang, Z. X. Ning, L. Li, J. Am. Oil Chem. Soc., 2010, 87, 531-537.

    20. [20]

      [20] T. Yang, M. Rebsdorf, U. Engelrud, X. B. Xu, J. Agric. Food Chem., 2005, 53, 1475-1481.

    21. [21]

      [21] T. W. Tan, C. H. Yin, Biochem. Eng. J., 2005, 25, 39-45.

    22. [22]

      [22] B. Cheirsilp, W. Kaewthong, A. H-Kittikun, Biochem. Eng. J., 2007, 35, 71-80.

    23. [23]

      [23] Á. G. Solaesa, S. L. Bucio, M. T. Sanz, S. Beltrán, S. Rebolleda, J. Oleo. Sci., 2014, 63, 449-460.

    24. [24]

      [24] M. T. Sanz, R. Murga, S. Beltrán, J. L. Cabezas, J. Coca, Ind. Eng. Chem. Res., 2002, 41, 512-517.

    25. [25]

      [25] F. G. Helfferich, Ion Exchange, McGraw-Hill, New York, 1962.

    26. [26]

      [26] D. M. Chesterfield, P. L. Rogers, E. O. Al-Zaini, A. A .Adesina, Chem. Eng. J., 2012, 207-208, 701-710.

    27. [27]

      [27] H. P. Dong, Y. J. Wang, Y. G. Zheng, J. Mol. Catal. B, 2010, 66, 90-94.

    28. [28]

      [28] H. S. Fogler, Elements of Chemical Reaction Engineering, 3rd ed, Prentice-Hall International, Inc., New Jersey, 1999.

    29. [29]

      [29] R. C. Reid, J. M. Prausnitz, B. E. Poling, The Properties of Gases & Liquids, 4th ed, McGraw-Hill Book Company, New york, 1987.

    30. [30]

      [30] P. Olivares-Carrillo, J. Quesada-Medina, A. P. de los Ríos, F. J. Hernández-Fernández, Chem. Eng. J., 2014, 241, 418-432.

    31. [31]

      [31] J. E. Bailey, D. F. Ollis, Biochemical Engineering Fundamentals, Mcgrawhill, New York, 1986.

    32. [32]

      [32] J. Pleiss, M. Fischer, R. D. Schmid, Chem. Phys. Lipids, 1998, 93, 67-80.

    33. [33]

      [33] S. L. Bucio, Á. G. Solaesa, M. T. Sanz, R. Melgosa, S. Beltrán, H. Sovová, J. Oleo. Sci., 2015, 64, 431-441.

    34. [34]

      [34] R. J. Sengwa, V. Khatri, S. Choudhary, S. Sankhla, J. Mol. Liq., 2010, 154, 117-123.

    35. [35]

      [35] F. V. K. Young, The Chemical & Physical Properties of Crude Fish Oils for Refiners & Hidrogenators, Fish Oil Bulletin, 1986.

    36. [36]

      [36] F. I. Chowdhury, M. A. Saleh, J. Mol. Liq., 2014, 191, 156-160.

    37. [37]

      [37] R. Pawongrat, X. Xu, A. H-Kittikun, J. Sci. Food Agric., 2008, 88, 256-262.

    38. [38]

      [38] R. Pawongrat, X. Xu, A. H-Kittikun, Food Chem., 2007, 104, 251-258.

  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    3. [3]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    4. [4]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    5. [5]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    6. [6]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    7. [7]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    8. [8]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    9. [9]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    10. [10]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    11. [11]

      Jiajie Cai Chang Cheng Bowen Liu Jianjun Zhang Chuanjia Jiang Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084

    12. [12]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    13. [13]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    14. [14]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    15. [15]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    16. [16]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    17. [17]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    18. [18]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    19. [19]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    20. [20]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

Metrics
  • PDF Downloads(0)
  • Abstract views(330)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return