Citation: H. B. Hassan, Z. Abdel Hamid, Rabab M. El-Sherif. Electrooxidation of methanol and ethanol on carbon electrodeposited Ni-MgO nanocomposite[J]. Chinese Journal of Catalysis, ;2016, 37(4): 616-627. doi: 10.1016/S1872-2067(15)61034-8 shu

Electrooxidation of methanol and ethanol on carbon electrodeposited Ni-MgO nanocomposite

  • Corresponding author: H. B. Hassan,  Z. Abdel Hamid, 
  • Received Date: 6 October 2015
    Available Online: 22 December 2015

  • Ni-MgO nano-composites were prepared on carbon anodes by electrodeposition from a nickel Watts bath in the presence of fine MgO reinforcement particles. Their performance as electrocatalysts for the oxidation of methanol and ethanol in alkaline medium was investigated and compared with that of carbon coated pure Ni (Ni/C). The chemical composition, phase structure, and surface morphology of the deposited nano-composites were studied by energy dispersive X-ray spectroscopy, X-ray diffractometry, and scanning electron microscopy, respectively. Different electrochemical techniques were used to estimate the catalytic activity of the prepared electrocatalyst anodes, including cyclic voltammetry (CV), chronoamperometry, and electrochemical impedance spectroscopy (EIS). The Ni/C electrocatalyst alone exhibited remarkably low catalytic activity and poor stability toward the electrooxidation process. The inclusion of MgO significantly promoted the catalytic activity of the Ni catalyst for the alcohol electrooxidation and enhanced its poisoning resistance. The EIS results confirmed those of CV and revealed a lower charge transfer resistance and enhanced roughness for the Ni-MgO/C nano-composite electrodes compared with those of Ni/C.
  • 加载中
    1. [1]

      [1] J. C. Amphlett, B. A. Peppley, E. Halliop, A. Sadiq, J. Power Sources, 2001, 96, 204-213.

    2. [2]

      [2] V. M. Barragan, A. Heinzel, J. Power Sources, 2002, 104, 66-72.

    3. [3]

      [3] V. Comignani, J. M. Sieben, M. E. Brigante, M. M. E. Duarte, J. Power Sources, 2015, 278, 119-127.

    4. [4]

      [4] V. A. Kazakov, V. N. Titova, A. A. Yavich, N. V. Petrova, M. R. Tarasevich, Russ. J. Electrochem., 2004, 40, 679-682.

    5. [5]

      [5] M. R. Tarasevich, Z. R. Karichev, V. A. Bogdanovskaya, A. V. Kapustin, E. N. Lubnin, M. A. Osina, Russ. J. Electrochem., 2005, 41, 736-745.

    6. [6]

      [6] L. M. Yang, D. F. Yan, C. B. Liu, H. J. Song, Y. H. Tang, S. L. Luo, M. J. Liu, J. Power Sources, 2015, 278, 725-732.

    7. [7]

      [7] A. Abdel Aal, H. B. Hassan, J. Alloy. Compd., 2009, 477, 652-656.

    8. [8]

      [8] N. Sattarahmady, H. Heli, F. Faramarzi, Talanta, 2010, 82, 1126-1135.

    9. [9]

      [9] L. Zhang, F. Li, Appl. Clay Sci., 2010, 50, 64-72.

    10. [10]

      [10] B. P. Lu, J. Bai, X. J. Bo, L. D. Zhu, L. P. Gu, Electrochim. Acta, 2010, 55, 8724-8730.

    11. [11]

      [11] H. B. Hassan, Z. Abdel Hamid, Int. J. Hydrogen Energy, 2011, 36, 849-856.

    12. [12]

      [12] H. B. Hassan, Z. Abdel Hamid, Surf. Interface Anal., 2013, 45, 1135- 1143.

    13. [13]

      [13] H. B. Hassan, M. A. Abdel Rahim, M. W. Khalil, R. F. Mohammed, Int. J. Electrochem. Sci., 2014, 9, 760-777.

    14. [14]

      [14] E. Antolini, E. R. Gonzalez, J. Power Sources, 2010, 195, 3431- 3450.

    15. [15]

      [15] A. J. Motheo, G. Tremiliosi-Filho, E. R. Gonzalez, K. B. Kokoh, J. M. Leger, C. Lamy, J. Appl. Electrochem., 2006, 36, 1035-1041.

    16. [16]

      [16] M. A. Abdel Rahim, R. M. Abdel Hameed, M. W. Khalil, J. Power Sources, 2004, 134, 160-169.

    17. [17]

      [17] Y. H. Qin, Y. F. Li, R. L. Lv, T. L. Wang, W. G. Wang, C. W. Wang, J. Power Sources, 2015, 278, 639-644.

    18. [18]

      [18] H. B. Hassan, Z. Abdel Hamid, M. Hassan, Surf. Interface Anal., 2014, 46, 512-520.

    19. [19]

      [19] Y. Wang, Z. Xu, Surf. Coat. Technol., 2006, 200, 3896-3902.

    20. [20]

      [20] A. Abdel Aal, K. M. Ibrahim, Z. Abdel Hamid, Wear, 2006, 260, 1070-1075.

    21. [21]

      [21] A. Abdel Aal, M. A. Barakat, R. M. Mohamed, Appl. Surf. Sci., 2008, 254, 4577-4583.

    22. [22]

      [22] A. Abdel Aal, Mater. Sci. Eng. A, 2008, 474, 181-187.

    23. [23]

      [23] H. B. Hassan, Z. Abdel Hamid, Int. J. Hydrogen Energy, 2011, 36, 5117-5127.

    24. [24]

      [24] C. W. Xu, Z. Q. Tian, P. K. Shen, S. P. Jiang, Electrochim. Acta, 2008, 53, 2610-2618.

    25. [25]

      [25] C. Kacar, B. Dalkiran, P. E. Erden, E. Kilic, Appl. Surf. Sci., 2014, 311, 139-146.

    26. [26]

      [26] R. Suresh, K. Giribabu, R. Manigandan, S. Praveen Kumar, S. Munusamy, S. Muthamizh, A. Stephen, V. Narayanan, Sens. Actuators B, 2014, 202, 440-447.

    27. [27]

      [27] H. Heli, H. Yadegari, Electrochim. Acta, 2010, 55, 2139-2148.

    28. [28]

      [28] J. P. Lei, H. Huang, X. L. Dong, L. P. Sun, B. Lu, M. K. Lei, Q. Wang, C. Dong, G. Z. Cao, Int. J. Hydrogen Energy, 2009, 34, 8127-8134.

    29. [29]

      [29] P. V. Samant, J. B. Fernandes, J. Power Sources, 1999, 79, 114-118.

    30. [30]

      [30] B. Liu, J. H. Chen, C. H. Xiao, K. Z. Cui, L. Yang, H. L. Pang, Y. F. Kuang, Energy Fuels, 2007, 21, 1365-1369.

    31. [31]

      [31] S. A. Fadl-Allah, R. M. El-Sherief, W. A. Badawy, J. Appl. Electrochem., 2008, 38, 1459-1466.

    32. [32]

      [32] H. K. Lee, H. Y. Lee, J. M. Jeon, Surf. Coat. Technol., 2007, 201, 4711-4717.

    33. [33]

      [33] M. A. M. Ibrahim, J. Appl. Electrochem., 2006, 36, 295-301.

    34. [34]

      [34] N. Guglielmi, J. Electrochem. Soc., 1972, 119, 1009-1012.

    35. [35]

      [35] S. Shawki, Z. Abdel Hamid, Anti-Corros. Method Mater., 1997, 44, 178-185.

    36. [36]

      [36] R. Q. Fratari, A. Robin, Surf. Coat. Technol., 2006, 200, 4082-4090.

    37. [37]

      [37] R. Winand, Hydrometallurgy, 1992, 29, 567-598.

    38. [38]

      [38] R. Winand, Electrochim. Acta, 1994, 39, 1091-1105.

    39. [39]

      [39] R. Winand, J. Appl. Electrochem., 1991, 21, 377-385.

    40. [40]

      [40] W. Schmickler, Interfacial Electrochemistry, Oxford University Press, Oxford, 1996.

    41. [41]

      [41] B. D. Cullity, Elements of X-Ray Diffraction, 2nd ed., Addison Wesley Publishing, London, 1978.

    42. [42]

      [42] P. M. Robertson, J. Electroanal. Chem. Interfacial Electrochem., 1980, 111, 97-104.

    43. [43]

      [43] M. Fleischmann, K. Korinek, D. Pletcher, J. Electroanal. Chem., 1971, 31, 39-49.

    44. [44]

      [44] P. Oliva, J. Leonardi, J. F. Laurent, C. Delmas, J. J. Braconnier, M. Figlarz, F. Fievet, A. de Guibert, J. Power Sources, 1982, 8, 229-255.

    45. [45]

      [45] L. Garcıa-Cruz, A. Saez, C. O. Ania, J. Solla-Gullon, T. Thiemann, J. Iniesta, V. Montiel, Carbon, 2014, 73, 291-302.

    46. [46]

      [46] M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, National Association of Corrosion Engineers, Houston, Texas, USA, 1974.

    47. [47]

      [47] R. Barnard, C. F. Randell, F. L. Tye, J. Appl. Electrochem., 1980, 10, 109-125.

    48. [48]

      [48] R. S. Schrebler-Guzman, J. R. Vilche, A. J. Arvia, J. Appl. Electrochem., 1978, 8, 67-70.

    49. [49]

      [49] J. Wang, Analytical Electrochemistry, 3rd ed., John Wiley & Sons Inc., New Jersey, 2006.

    50. [50]

      [50] A. Döner, E. Telli, G. Kardas, J. Power Sources, 2012, 205, 71-79.

    51. [51]

      [51] A. M. Fekry, Electrochim. Acta, 2009, 54, 3480-3489.

    52. [52]

      [52] A. Maritan, F. Toigo, Electrochim. Acta, 1990, 35, 141-145.

    53. [53]

      [53] Y. C. Liu, X. P. Qiu, W. T. Zhu, G. S. Wu, J. Power Sources, 2003, 114, 10-14.

    54. [54]

      [54] J. T. Mueller, P. M. Urban, J. Power Sources, 1998, 75, 139-143.

    55. [55]

      [55] Y. Bultel, L. Genies, O. Antoine, P. Ozil, R. Durand, J. Electroanal. Chem., 2002, 527, 143-155.

    56. [56]

      [56] E. Hao Yu, K. Scott, R. W. Reeve, J. Electroanal. Chem., 2003, 547, 17-24.

    57. [57]

      [57] G. J. Brug, A. L. G. Van Den Eeden, M. Sluyters-Rehbach, J. H. Sluyters, J. Electroanal. Chem. Interfacial Electrochem., 1984, 176, 275-295.

    58. [58]

      [58] R. K. Shervedani, A. Lasia, J. Appl. Electrochem., 1999, 29, 979-986.

    59. [59]

      [59] M. Fleischmann, K. Korinek, D. Pletcher, J. Chem. Soc. Perkin Trans. 2, 1972, 1396-1403.

    60. [60]

      [60] P. M. Robertson, J. Electroanal. Chem. Interfacial Electrochem., 1980, 111, 97-104.

    61. [61]

      [61] J. Taraszewska, G. Roslonek, J. Electroanal. Chem., 1994, 364, 209-213.

    62. [62]

      [62] A. A. El-Shafei, J. Electroanal. Chem., 1999, 471, 89-95.

    63. [63]

      [63] I. Danaee, M. Jafarian, A. Mirzapoor, F. Gobal, M. G. Mahjani, Electrochim. Acta, 2010, 55, 2093-2100.

  • 加载中
    1. [1]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    2. [2]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    3. [3]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    4. [4]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    5. [5]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    6. [6]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    7. [7]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    8. [8]

      Siwei Lv Tantian Tan Xinyue Li Siyan Zhang Mingyuan Zhang Minghao Li Hangshuo Guo Zhaorong Li Liangjie Dong Fengshuo Zhang Junlong Zhao . Competition of the “King of Transboundary Medicine”. University Chemistry, 2024, 39(9): 102-108. doi: 10.12461/PKU.DXHX202403034

    9. [9]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    10. [10]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    11. [11]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    12. [12]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    13. [13]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    14. [14]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    15. [15]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    16. [16]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    17. [17]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    18. [18]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    19. [19]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    20. [20]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

Metrics
  • PDF Downloads(1)
  • Abstract views(440)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return