Citation: J. H. Flores, M. E. H. Maia da Costa, M. I. Pais da Silva. Effect of Cu-ZnO-Al2O3 supported on H-ferrierite on hydrocarbons formation from CO hydrogenation[J]. Chinese Journal of Catalysis, ;2016, 37(3): 378-388. doi: 10.1016/S1872-2067(15)61032-4 shu

Effect of Cu-ZnO-Al2O3 supported on H-ferrierite on hydrocarbons formation from CO hydrogenation

  • Corresponding author: M. I. Pais da Silva, 
  • Received Date: 29 October 2015
    Available Online: 9 December 2015

  • Methanol synthesis catalysts based on Cu, Zn and Al were prepared by three methods and subsequently mixed with H-ferrierite zeolite in an aqueous suspension to disperse the catalysts over the support. These materials were characterized by X-ray diffraction, N2 adsorption, transmission electron microscopy, temperature programmed reduction, NH3 and H2 temperature-programmed desorption, and X-ray photoelectron spectroscopy. They were also applied to the CO hydrogenation reaction to produce dimethyl ether and hydrocarbons. The catalysts were prepared by coprecipitation under low and high supersaturation conditions and by a homogeneous precipitation method. The preparation technique was found to affect the precursor structural characteristics, such as purity and crystallinity, as well as the particle size distribution of the resulting catalyst. Low supersaturation conditions favored high dispersion of the Cu species, increasing the methanol synthesis catalyst's metallic surface area and resulting in a homogeneous particle size distribution. These effects in turn were found to modify the zeolite properties, promoting both a low micropore volume and blockage of the zeolite acid sites. The effect of the methanol synthesis catalyst on the reaction was verified by the correlation between the Cu surface area and the CO conversion rate.
  • 加载中
    1. [1]

      [1] E. Iglesia, S. L. Soled, R. A. Fiato, J. Catal., 1992, 137, 212-224.

    2. [2]

      [2] M. E. Dry, Catal. Today, 2002, 71, 227-241.

    3. [3]

      [3] Y. J. Jin, S. Asaoka, X. H. Li, K. Asami, K. Fujimoto, Fuel Process. Technol., 2004, 85, 1151-1164.

    4. [4]

      [4] Q. W. Zhang, X. H. Li, K. Asami, S. Asaoka, K. Fujimoto, Fuel Process. Technol., 2004, 85, 1139-1150.

    5. [5]

      [5] Q. J. Ge, X. H. Li, H. Kaneko, Fujimoto K., J. Mol. Catal. A, 2007, 278, 215-219.

    6. [6]

      [6] Q. W. Zhang, X. H. Li, K. Asami, S. Asaoka, K. Fujimoto, Catal. Lett., 2005, 102, 51-55.

    7. [7]

      [7] Q. W. Zhang, X. H. Li, K. Asami, S. Asaoka, K. Fujimoto, Catal. Today, 2005, 104, 30-36.

    8. [8]

      [8] Q. J. Ge, Y. Lian, X. D. Yuan, X. H. Li, K. Fujimoto, Catal. Commun., 2008, 9, 256-261.

    9. [9]

      [9] S. H. Kang, J. W. Bae, K. W. Jun, H. S. Potdar, Catal. Commun., 2008, 9, 2035-2039.

    10. [10]

      [10] J. W. Bae, S. H. Kang, Y. J. Lee, K. W. Jun, Appl. Catal. B, 2009, 90, 426-435.

    11. [11]

      [11] J. L. Li, X. G. Zhang, T. Inui, Appl. Catal. A, 1996, 147, 23-33.

    12. [12]

      [12] Y. J. Jin, S. Asaoka, X. H. Li, K. Asami, K. Fujimoto, J. Jpn. Petrol. Inst., 2004, 47, 394-402.

    13. [13]

      [13] Y. J. Jin, S. Asaoka, X. H. Li, K. Asami, K. Fujimoto, J. Jpn. Petrol. Inst., 2005, 48, 45-52.

    14. [14]

      [14] M. Turco, G. Bagnasco, U. Costantino, F. Marmottini, T. Montanari, G. Ramis, G. Busca, J. Catal., 2004, 228, 43-55.

    15. [15]

      [15] C. Baltes, S. Vukojevic, F. Schüth, J. Catal., 2008, 258, 334-344.

    16. [16]

      [16] X. R. Zhang, L. C. Wang, C. Z. Yao, Y. G. Cao, W. L. Dai, H. Y. He, K. N. Fan, Catal. Lett., 2005, 102, 83-89.

    17. [17]

      [17] J. P. Shen, C. Song, Catal. Today, 2002, 77, 89-98.

    18. [18]

      [18] J. H. Flores, D. P. B. Peixoto, L. G. Appel, R. R. de Avillez, M. I. P. da Silva, Catal. Today, 2011, 172, 218-225.

    19. [19]

      [19] M. M. V. M. Souza, K. A. Ferreira, O. R. de Macedo Neto, N. F. P. Ribeiro, M. Schmal, Catal. Today, 2008, 133-135, 750-754.

    20. [20]

      [20] M. Behrens, D. Brennecke, F. Girgsdies, S. Kiβner, A. Trunschke, N. Nasrudin, S. Zakaria, N. F. Idris, S. B. A. Hamid, B. Kniep, R. Fischer, W. Busser, M. Muhler, R. Schlögl, Appl. Catal. A, 2011, 392, 93-102.

    21. [21]

      [21] F. Cavani, F. Trifirò, A. Vaccari., Catal Today, 1991, 11, 173-301.

    22. [22]

      [22] G. J. A. A. Soler-Illia, R.J. Candal, A. E. Regazzoni, M. A. Blesa, Chem. Mater., 1997, 9, 184-191.

    23. [23]

      [23] Q. J. Ge, Y. M. Huang, F. Y. Qiu, S. B. Li, Appl. Catal. A, 1998, 167, 23-30.

    24. [24]

      [24] P. S. S. Prasad, J. W. Bae, S. H. Kang, Y J. Lee, K. W. Jun, Fuel Process. Technol., 2008, 89, 1291-1286.

    25. [25]

      [25] J. H. Flores, G. Solorzano, M. I. P. da Silva, Appl. Surf. Sci., 2008, 254, 6461-6466.

    26. [26]

      [26] M. Mühler, L. P. Nielsen, E. Törnqvist, B. S. Clausen, H. Topsoee, Catal. Lett., 1992, 14, 241-249.

    27. [27]

      [27] J. P. Shen, C. Song, Catal. Today, 2002, 77, 89-98.

    28. [28]

      [28] Y. Lwin, M. A. Yarmo, Z. Yaakob, A. B. Mohamad, W. R. W. Daud, Mater. Res. Bull., 2001, 36, 193-198.

    29. [29]

      [29] M. Behrens, I. Kasatkin, S. Kühl, G. Weinberg, Chem. Mater., 2010, 22, 386-397.

    30. [30]

      [30] Y. Okamoto, K. Fukino, T. Imanaka, S. Teranishi. J. Phys. Chem., 1983, 87, 3740-3747.

    31. [31]

      [31] W. L. Dai, Q. Sun, J. F. Deng, D. Wu, Y. H. Sun, Appl. Surf. Sci., 2001, 177, 172-179.

    32. [32]

      [32] G. Moretti, G. Fierro, M. L. O. Jacono, P. Porta, Surf. Interf. Anal., 1989, 14, 325-336.

    33. [33]

      [33] A. A. G. Lima, M. Nele, E. L. Moreno, H. M. C. Andrade, Appl. Catal. A, 1998, 171, 31-43.

    34. [34]

      [34] G. R. Moradi, S. Nosrati, F. Yaripor, Catal. Commun., 2007, 8, 598-606.

    35. [35]

      [35] D. F. Jin, B. Zhu, Z. Y. Hou, J. H. Fei, H. Lou, X. M. Zheng, Fuel, 2007, 86, 2707-2713.

    36. [36]

      [36] S. D. Kim, S. C. Baek, Y. J. Lee, K. W. Jun, M. J. Kim, I. S. Yoo, Appl. Catal. A, 2006, 309, 139-143.

    37. [37]

      [37] X. R. Zhang, L. C. Wang, C. Z. Yao, Y. Cao, W. L. Dai, H. Y. He, K. N. Fan, Catal. Lett., 2005, 102, 183-190.

    38. [38]

      [38] J. Palgunadi, I. Yati, K. D. Jung, Reac. Kinet. Metch. Catal., 2010, 101, 117-128.

    39. [39]

      [39] P. Gao, F. Li, F. K. Xiao, N. Zhao, W. Wei, L. S. Zhong, Y. H. Sun, Catal. Today, 2012, 194, 9-15.

    40. [40]

      [40] P. Gao, F. Li, H. J. Zhan, N. Zhao, F. K. Xiao, W. Wei, L. S. Zhong, H. Wang, Y. H. Sun, J. Catal., 2013, 298, 51-60.

    41. [41]

      [41] P. Gao, R. Xie, H. Wang, L. Zhang, L. Xia, Z. Zhang, W. Wei, Y. Sun, J. CO2 Utilization, 2015, in press.

    42. [42]

      [42] Z. Li, S. W. Yan, M. Fan, Fuel, 2013, 106, 178-186.

    43. [43]

      [43] Z. Li, H. Y. Zheng, K. C. Kie, Chin. J. Catal., 2008, 29, 431-435.

    44. [44]

      [44] G. Fierro, M. Lo Jacono, M. Inversi, P. Porta, R. Lavecchia, F. Cioci, J. Catal., 1994, 148, 709-721.

    45. [45]

      [45] B. Lindström, L. J. Pettersson, P. G. Menon, Appl. Catal. A, 2002, 234, 111-125.

    46. [46]

      [46] U. Constantino, F. Marmottini, M. Nocchetti, R. Vivani, Eur. J. Inorg. Chem., 1998, 1439-1446.

    47. [47]

      [47] M. M. Günter, T. Ressler, R. E. Jentoft, B. Bems, J. Catal., 2001, 203, 133-149.

    48. [48]

      [48] J. Agrell, H. Birgersson, M. Boutonnet, I. Meliàn-Cabrera, R. M. Navarro, J. L. G. Fierro, J. Catal., 2003, 219, 389-403.

    49. [49]

      [49] W. Fu, Z. H. Bao, W. Z. Ding, K. C. Chou, Q. Li, Catal. Commun., 2011, 12, 505-509.

    50. [50]

      [50] Y. Y. Liu, T. Hayakawa, K. Suzuki, S. Hamakawa, T. Tsunoda, T. Ishii, M. Kumagai, Appl. Catal. A, 2002, 223, 137-145.

    51. [51]

      [51] W. R. A. M. Robinson, J. C. Mol, Appl. Catal., 1991, 76, 117-129.

    52. [52]

      [52] K. Fujimoto, H. Kaneko, Q. W. Zhang, Q. J. Ge, X. H. Li, Stud. Surf. Sci. Catal., 2007, 167, 349-354.

    53. [53]

      [53] J. M. Fougerit, N. S. Gnep, M. Guisnet, Microporous Mesoporous Mater., 1999, 29, 79-89.

    54. [54]

      [54] K. Asami, Q. W. Zhang, X. H. Li, S. Asaoka, K. Fujimoto, Stud. Surf. Sci. Catal., 2004, 147, 427-432.

    55. [55]

      [55] Q. J. Ge, T. Tomonobu, K. Fujimoto, X. H. Li, Catal. Commun., 2008, 9, 1775-1778.

    56. [56]

      [56] C. M. Li, K. Fujimoto, Energy Fuels, 2014, 28, 1331-1337.

    57. [57]

      [57] C. M. Li, K. Fujimoto, Catal. Sci. Technol., 2015, 5, 4501-4510.

    58. [58]

      [58] V. M. Mysov, S. I. Reshetnikov, V. G. Stepanov, K. G. Ione, Chem. Eng. J., 2005, 107, 63-71.

  • 加载中
    1. [1]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    2. [2]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    3. [3]

      Xiaorui ChenXuan LuoTongming SuXinling XieLiuyun ChenYuejing BinZuzeng QinHongbing Ji . Ga-doped Cu/γ-Al2O3 bifunctional interface sites promote the direct hydrogenation of CO2 to DME. Acta Physico-Chimica Sinica, 2025, 41(10): 100126-0. doi: 10.1016/j.actphy.2025.100126

    4. [4]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    5. [5]

      Kangjuan ChengChunxiao LiuYoupeng WangQiu JiangTingting ZhengXu LiChuan Xia . Design of noble metal catalysts and reactors for the electrosynthesis of hydrogen peroxide. Acta Physico-Chimica Sinica, 2025, 41(10): 100112-0. doi: 10.1016/j.actphy.2025.100112

    6. [6]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    7. [7]

      Ying Chen Ronghua Yan Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066

    8. [8]

      Qi WangYuqing LiuJiefei WangYuan-Yuan MaJing DuZhan-Gang Han . Catalysts for electrocatalytic dechlorination of chlorinated aromatic hydrocarbons: synthetic strategies, applications, and challenges. Acta Physico-Chimica Sinica, 2025, 41(10): 100120-0. doi: 10.1016/j.actphy.2025.100120

    9. [9]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    10. [10]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    11. [11]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    12. [12]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    13. [13]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    14. [14]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

    15. [15]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    16. [16]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    17. [17]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    18. [18]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    19. [19]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    20. [20]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

Metrics
  • PDF Downloads(0)
  • Abstract views(594)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return