Citation:
Yuanyuan Lu, Guo Liu, Jing Zhang, Zhaochi Feng, Can Li, Zhi Li. Fabrication of a monoclinic/hexagonal junction in WO3 and its enhanced photocatalytic degradation of rhodamine B[J]. Chinese Journal of Catalysis,
;2016, 37(3): 349-358.
doi:
10.1016/S1872-2067(15)61023-3
-
A series of WO3 samples with different crystalline phases were prepared by the thermal decomposition method from ammonium tungstate hydrate. X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy, and N2 adsorption-desorption were used to characterize the crystalline phase, morphology, particle size, chemical composition, and surface area of the WO3 samples. The formation of hexagonal (h-WO3) and monoclinic (m-WO3) crystal structures of WO3 at different temperatures or different times was confirmed by XRD. m-WO3 is formed at 600 ℃, while m-WO3 starts to transform into h-WO3 at 800 ℃. However, h-WO3, which forms at 800 ℃, may transform into m-WO3 by increasing the calcination temperature to 1000 ℃. SEM results indicate that m-WO3 particles exhibit a bulky shape with heavy aggregates, while h-WO3 particles exhibit a rod-like shape. Moreover, m-WO3 crystals are sporadically patched on the surface of the h-WO3 rod-like particles, resulting in the exposure of both m-WO3 and h-WO3 on the surface. It is observed that the monoclinic phase (m-WO3)/hexagonal phase (h-WO3) junction was fabricated by tuning the calcination temperature and calcination time. The relative ratios between m-WO3 and h-WO3 in the phase junction can readily be tailored by control of the calcination time. The photocatalytic activities of WO3 with different crystalline phases were evaluated by the photocatalytic degradation of rhodamine B as a model pollutant. A higher photocatalytic activity was observed in the WO3 sample with the m-WO3/h-WO3 junction as compared with the sample with only m-WO3. The improvement of photocatalytic activity can be attributed to the reduction of the electron-hole recombination rate owing to the formation of the phase junction, whose presence has been confirmed by HRTEM and photoluminescence spectra.
-
-
-
[1]
[1] C. G. Feng, H. R. Shang, X. Liu, Chin. J. Catal., 2014, 35, 168-174.
-
[2]
[2] P. Zhou, J. G. Yu, M. Jaroniec, Adv. Mater., 2014, 26, 4920-4935.
-
[3]
[3] H. H. Chen, Y. M. Xu, RSC Adv., 2015, 5, 8108-8113.
-
[4]
[4] L. Q. Jing, Z. Wei, G. H. Tian, H. G. Fu, Chem. Soc. Rev., 2013, 42, 9509-9549.
-
[5]
[5] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science, 2001, 293, 269-271.
-
[6]
[6] R. G. Li, Y. X. Weng, X. Zhou, X. L. Wang, Y. Mi, R. F. Chong, H. X. Han, C. Li, Energy Environ. Sci., 2015, 8, 2377-2382.
-
[7]
[7] L. Li, M. Krissanasaeranee, S. W. Pattinson, M. Stefik, U. Wiesner, U. Steiner, D. Eder, Chem. Commun., 2010, 46, 7620-7622.
-
[8]
[8] K. Jothivenkatachalam, S. Prabhu, A. Nithya, K. Jeganathan, RSC Adv., 2014, 4, 21221-21229.
-
[9]
[9] H. L. Zhang, J. Q. Yang, D. Li, W. Guo, Q. Qin, L. J. Zhu, W. J. Zheng, Appl. Surf. Sci., 2014, 305, 274-280.
-
[10]
[10] J. J. Liu, S. Q. Han, J. Li, J. Lin, RSC Adv., 2014, 4, 37556-37562.
-
[11]
[11] L. Zhu, Z. D. Meng, W. C. Oh, Chin. J. Catal., 2011, 32, 926-932.
-
[12]
[12] J. Zhang, Q. Xu, Z. C. Feng, M. J. Li, C. Li, Angew. Chem. Int. Ed., 2008, 47, 1766-1769.
-
[13]
[13] J. G. Yu, J. X. Low, W. Xiao, P. Zhou, M. Jaroniec, J. Am. Chem. Soc., 2014, 136, 8839-8842.
-
[14]
[14] X. Wang, Q. Xu, M. R. Li, S. Shen, X. L. Wang, Y. C. Wang, Z. C. Feng, J. Y. Shi, H. X. Han, C. Li, Angew. Chem. Int. Ed., 2012, 51, 13089-13092.
-
[15]
[15] Y. F. Qiu, M. L. Yang, H. B. Fan, Y. Z. Zuo, Y. Y. Shao, Y. J. Xu, X. X. Yang, S. H. Yang, Mater. Lett., 2011, 65, 780-782.
-
[16]
[16] Y. Liu, Q. Li, S. A. Gao, J. K. Shang, CrystEngComm, 2014, 16, 7493-7501.
-
[17]
[17] X. Liu, F. Y. Wang, Q. Wang, Phys. Chem. Chem. Phys., 2012, 14, 7894-7911.
-
[18]
[18] H. D. Zheng, J. Z. Ou, M. S. Strano, R. B. Kaner, A. Mitchell, K. Kalantar-zadeh, Adv. Funct. Mater., 2011, 21, 2175-2196.
-
[19]
[19] D. B. Hernandez-Uresti, D. Sánchez-Martínez, A. Martínez-de la Cruz, S. Sepúlveda-Guzmán, L. M. Torres-Martínez, Ceram. Int., 2014, 40, 4767-4775.
-
[20]
[20] Y. Y. Sun, W. Z. Wang, L. Zhang, Z. J. Zhang, Chem. Eng. J., 2012, 211-212, 161-167.
-
[21]
[21] I. Aslam, C. B. Cao, M. Tanveer, W. S. Khan, M. Tahir, M. Abid, F. Idrees, F. K. Butt, Z. Alia, N. Mahmood, New J. Chem., 2014, 38, 5462-5469.
-
[22]
[22] M. S. Marashi, J. Vahdati Khaki, S. M. Zebarjad, Int. J. Refract. Met. Hard Mater., 2012, 30, 177-179.
-
[23]
[23] E. Luévano-Hipólito, A. Martínez-de la Cruz, Q. L. Yu, H. J. H. Brouwers, Ceram. Int., 2014, 40, 12123-12128.
-
[24]
[24] I. M. Szilágyi, J. Madarász, G. Pokol, P. Király, G. Tárkányi, S. Saukko, J. Mizsei, A. L. Tóth, A. Szabó, K. Varga-Josepovits, Chem. Mater., 2008, 20, 4116-4125.
-
[25]
[25] E. Lassner, W. D. Schubert, Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds, Springer, New York, 1999.
-
[26]
[26] G. Lu, X. Y. Li, Z. P. Qu, Q. D. Zhao, H. Li, Y. Shen, G. H. Chen, Chem. Eng. J., 2010, 159, 242-246.
-
[27]
[27] A. H. Yan, C. S. Xie, F. Huang, S. P. Zhang, S. L. Zhang, J. Alloys Compd., 2014, 610, 132-137.
-
[28]
[28] S. F. Chen, L. Ji, W. M. Tang, X. L. Fu, Dalton Trans., 2013, 42, 10759-10768.
-
[29]
[29] S. Q. Wei, Y. Y. Chen, Y. Y. Ma, Z. C. Shao, J. Mol. Catal. A, 2010, 331, 112-116.
-
[30]
[30] R. L. Liu, H. Y. Ye, X. P. Xiong, H. Q. Liu, Mater. Chem. Phys., 2010, 121, 432-439.
-
[31]
[31] S. L. Bai, H. Y. Liu, J. H. Sun, Y. Tian, S. Chen, J. L. Song, R. X. Luo, D. Q. Li, A. F. Chen, C. C. Liu, Appl. Surf. Sci., 2015, 338, 61-68.
-
[32]
[32] Q. H. Huang, L. S. Wang, M. Wang, J. M. Nan, J. Alloys Compd., 2011, 509, 9901-9905.
-
[33]
[33] J. Cao, B. D. Luo, H. L. Lin, B. Y. Xu, S. F. Chen, Appl. Catal. B, 2012, 111-112, 288-296.
-
[34]
[34] W. J. Li, D. Z. Li, Y. M. Lin, P. X. Wang, W. Chen, X. Z. Fu, Y. Shao, J. Phys. Chem. C, 2012, 116, 3552-3560.
-
[1]
-
-
-
[1]
Xia ZHANG , Yushi BAI , Xi CHANG , Han ZHANG , Haoyu ZHANG , Liman PENG , Shushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255
-
[2]
Yuanqing Wang , Yusong Pan , Hongwu Zhu , Yanlei Xiang , Rong Han , Run Huang , Chao Du , Chengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050
-
[3]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[4]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009
-
[5]
Xinxin YU , Yongxing LIU , Xiaohong YI , Miao CHANG , Fei WANG , Peng WANG , Chongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438
-
[6]
Yifan ZHAO , Qiyun MAO , Meijing GUO , Guoying ZHANG , Tongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001
-
[7]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030
-
[8]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[9]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[10]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024
-
[11]
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
-
[12]
Jingzhuo Tian , Chaohong Guan , Haobin Hu , Enzhou Liu , Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068
-
[13]
Jiajie Cai , Chang Cheng , Bowen Liu , Jianjun Zhang , Chuanjia Jiang , Bei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084
-
[14]
Linfeng Xiao , Wanlu Ren , Shishi Shen , Mengshan Chen , Runhua Liao , Yingtang Zhou , Xibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036
-
[15]
Jiawei Hu , Kai Xia , Ao Yang , Zhihao Zhang , Wen Xiao , Chao Liu , Qinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043
-
[16]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020
-
[17]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005
-
[18]
Chenye An , Sikandaier Abiduweili , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019
-
[19]
Tong WANG , Qinyue ZHONG , Qiong HUANG , Weimin GUO , Xinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011
-
[20]
Jingping Li , Suding Yan , Jiaxi Wu , Qiang Cheng , Kai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(1420)
- HTML views(214)