Citation:
Yuanyuan Lu, Guo Liu, Jing Zhang, Zhaochi Feng, Can Li, Zhi Li. Fabrication of a monoclinic/hexagonal junction in WO3 and its enhanced photocatalytic degradation of rhodamine B[J]. Chinese Journal of Catalysis,
;2016, 37(3): 349-358.
doi:
10.1016/S1872-2067(15)61023-3
-
A series of WO3 samples with different crystalline phases were prepared by the thermal decomposition method from ammonium tungstate hydrate. X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy, and N2 adsorption-desorption were used to characterize the crystalline phase, morphology, particle size, chemical composition, and surface area of the WO3 samples. The formation of hexagonal (h-WO3) and monoclinic (m-WO3) crystal structures of WO3 at different temperatures or different times was confirmed by XRD. m-WO3 is formed at 600 ℃, while m-WO3 starts to transform into h-WO3 at 800 ℃. However, h-WO3, which forms at 800 ℃, may transform into m-WO3 by increasing the calcination temperature to 1000 ℃. SEM results indicate that m-WO3 particles exhibit a bulky shape with heavy aggregates, while h-WO3 particles exhibit a rod-like shape. Moreover, m-WO3 crystals are sporadically patched on the surface of the h-WO3 rod-like particles, resulting in the exposure of both m-WO3 and h-WO3 on the surface. It is observed that the monoclinic phase (m-WO3)/hexagonal phase (h-WO3) junction was fabricated by tuning the calcination temperature and calcination time. The relative ratios between m-WO3 and h-WO3 in the phase junction can readily be tailored by control of the calcination time. The photocatalytic activities of WO3 with different crystalline phases were evaluated by the photocatalytic degradation of rhodamine B as a model pollutant. A higher photocatalytic activity was observed in the WO3 sample with the m-WO3/h-WO3 junction as compared with the sample with only m-WO3. The improvement of photocatalytic activity can be attributed to the reduction of the electron-hole recombination rate owing to the formation of the phase junction, whose presence has been confirmed by HRTEM and photoluminescence spectra.
-
-
-
[1]
[1] C. G. Feng, H. R. Shang, X. Liu, Chin. J. Catal., 2014, 35, 168-174.
-
[2]
[2] P. Zhou, J. G. Yu, M. Jaroniec, Adv. Mater., 2014, 26, 4920-4935.
-
[3]
[3] H. H. Chen, Y. M. Xu, RSC Adv., 2015, 5, 8108-8113.
-
[4]
[4] L. Q. Jing, Z. Wei, G. H. Tian, H. G. Fu, Chem. Soc. Rev., 2013, 42, 9509-9549.
-
[5]
[5] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science, 2001, 293, 269-271.
-
[6]
[6] R. G. Li, Y. X. Weng, X. Zhou, X. L. Wang, Y. Mi, R. F. Chong, H. X. Han, C. Li, Energy Environ. Sci., 2015, 8, 2377-2382.
-
[7]
[7] L. Li, M. Krissanasaeranee, S. W. Pattinson, M. Stefik, U. Wiesner, U. Steiner, D. Eder, Chem. Commun., 2010, 46, 7620-7622.
-
[8]
[8] K. Jothivenkatachalam, S. Prabhu, A. Nithya, K. Jeganathan, RSC Adv., 2014, 4, 21221-21229.
-
[9]
[9] H. L. Zhang, J. Q. Yang, D. Li, W. Guo, Q. Qin, L. J. Zhu, W. J. Zheng, Appl. Surf. Sci., 2014, 305, 274-280.
-
[10]
[10] J. J. Liu, S. Q. Han, J. Li, J. Lin, RSC Adv., 2014, 4, 37556-37562.
-
[11]
[11] L. Zhu, Z. D. Meng, W. C. Oh, Chin. J. Catal., 2011, 32, 926-932.
-
[12]
[12] J. Zhang, Q. Xu, Z. C. Feng, M. J. Li, C. Li, Angew. Chem. Int. Ed., 2008, 47, 1766-1769.
-
[13]
[13] J. G. Yu, J. X. Low, W. Xiao, P. Zhou, M. Jaroniec, J. Am. Chem. Soc., 2014, 136, 8839-8842.
-
[14]
[14] X. Wang, Q. Xu, M. R. Li, S. Shen, X. L. Wang, Y. C. Wang, Z. C. Feng, J. Y. Shi, H. X. Han, C. Li, Angew. Chem. Int. Ed., 2012, 51, 13089-13092.
-
[15]
[15] Y. F. Qiu, M. L. Yang, H. B. Fan, Y. Z. Zuo, Y. Y. Shao, Y. J. Xu, X. X. Yang, S. H. Yang, Mater. Lett., 2011, 65, 780-782.
-
[16]
[16] Y. Liu, Q. Li, S. A. Gao, J. K. Shang, CrystEngComm, 2014, 16, 7493-7501.
-
[17]
[17] X. Liu, F. Y. Wang, Q. Wang, Phys. Chem. Chem. Phys., 2012, 14, 7894-7911.
-
[18]
[18] H. D. Zheng, J. Z. Ou, M. S. Strano, R. B. Kaner, A. Mitchell, K. Kalantar-zadeh, Adv. Funct. Mater., 2011, 21, 2175-2196.
-
[19]
[19] D. B. Hernandez-Uresti, D. Sánchez-Martínez, A. Martínez-de la Cruz, S. Sepúlveda-Guzmán, L. M. Torres-Martínez, Ceram. Int., 2014, 40, 4767-4775.
-
[20]
[20] Y. Y. Sun, W. Z. Wang, L. Zhang, Z. J. Zhang, Chem. Eng. J., 2012, 211-212, 161-167.
-
[21]
[21] I. Aslam, C. B. Cao, M. Tanveer, W. S. Khan, M. Tahir, M. Abid, F. Idrees, F. K. Butt, Z. Alia, N. Mahmood, New J. Chem., 2014, 38, 5462-5469.
-
[22]
[22] M. S. Marashi, J. Vahdati Khaki, S. M. Zebarjad, Int. J. Refract. Met. Hard Mater., 2012, 30, 177-179.
-
[23]
[23] E. Luévano-Hipólito, A. Martínez-de la Cruz, Q. L. Yu, H. J. H. Brouwers, Ceram. Int., 2014, 40, 12123-12128.
-
[24]
[24] I. M. Szilágyi, J. Madarász, G. Pokol, P. Király, G. Tárkányi, S. Saukko, J. Mizsei, A. L. Tóth, A. Szabó, K. Varga-Josepovits, Chem. Mater., 2008, 20, 4116-4125.
-
[25]
[25] E. Lassner, W. D. Schubert, Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds, Springer, New York, 1999.
-
[26]
[26] G. Lu, X. Y. Li, Z. P. Qu, Q. D. Zhao, H. Li, Y. Shen, G. H. Chen, Chem. Eng. J., 2010, 159, 242-246.
-
[27]
[27] A. H. Yan, C. S. Xie, F. Huang, S. P. Zhang, S. L. Zhang, J. Alloys Compd., 2014, 610, 132-137.
-
[28]
[28] S. F. Chen, L. Ji, W. M. Tang, X. L. Fu, Dalton Trans., 2013, 42, 10759-10768.
-
[29]
[29] S. Q. Wei, Y. Y. Chen, Y. Y. Ma, Z. C. Shao, J. Mol. Catal. A, 2010, 331, 112-116.
-
[30]
[30] R. L. Liu, H. Y. Ye, X. P. Xiong, H. Q. Liu, Mater. Chem. Phys., 2010, 121, 432-439.
-
[31]
[31] S. L. Bai, H. Y. Liu, J. H. Sun, Y. Tian, S. Chen, J. L. Song, R. X. Luo, D. Q. Li, A. F. Chen, C. C. Liu, Appl. Surf. Sci., 2015, 338, 61-68.
-
[32]
[32] Q. H. Huang, L. S. Wang, M. Wang, J. M. Nan, J. Alloys Compd., 2011, 509, 9901-9905.
-
[33]
[33] J. Cao, B. D. Luo, H. L. Lin, B. Y. Xu, S. F. Chen, Appl. Catal. B, 2012, 111-112, 288-296.
-
[34]
[34] W. J. Li, D. Z. Li, Y. M. Lin, P. X. Wang, W. Chen, X. Z. Fu, Y. Shao, J. Phys. Chem. C, 2012, 116, 3552-3560.
-
[1]
-
-
-
[1]
Xia ZHANG , Yushi BAI , Xi CHANG , Han ZHANG , Haoyu ZHANG , Liman PENG , Shushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255
-
[2]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[3]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[4]
Xinxin YU , Yongxing LIU , Xiaohong YI , Miao CHANG , Fei WANG , Peng WANG , Chongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438
-
[5]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[6]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[7]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[8]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[9]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[10]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[11]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[12]
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
-
[13]
Jingzhuo Tian , Chaohong Guan , Haobin Hu , Enzhou Liu , Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068
-
[14]
Jiajie Cai , Chang Cheng , Bowen Liu , Jianjun Zhang , Chuanjia Jiang , Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084
-
[15]
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067
-
[16]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
-
[17]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[18]
Meihong Luo , Hongyu Wang . Teaching Reform of Benzoin Oxidation Experiment in the Context of Green Pharmaceutical Chemistry. University Chemistry, 2025, 40(5): 376-382. doi: 10.12461/PKU.DXHX202411055
-
[19]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[20]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(1192)
- HTML views(130)