Citation: Yanmei Zhang, Jing Zhang, Miaomiao Tian, Gang Chu, Chunshan Quan. Fabrication of amino-functionalized Fe3O4@Cu3(BTC)2 for heterogeneous Knoevenagel condensation[J]. Chinese Journal of Catalysis, ;2016, 37(3): 420-427. doi: 10.1016/S1872-2067(15)61013-0 shu

Fabrication of amino-functionalized Fe3O4@Cu3(BTC)2 for heterogeneous Knoevenagel condensation

  • Corresponding author: Yanmei Zhang,  Jing Zhang, 
  • Received Date: 15 October 2015
    Available Online: 3 November 2015

    Fund Project: 国家自然科学基金(21203017) (21203017)国家重点实验室开放基金(N-11-03) (N-11-03)中央高校基本科研业务费专项资金(DC201502020304). (DC201502020304)

  • Metal organic frameworks (MOFs) are an important platform for heterogeneous catalysts. Although MOFs with a smaller particle size exhibit better catalytic performance because of less diffusion limitations, their separation and recycling after catalytic reactions are difficult. The integration of MOFs with magnetic nanoparticles could facilitate their recovery and separation. Especially, the shell thickness of the core-shell structured composites is controllable. In this study, amino-functionalized Fe3O4@Cu3(BTC)2 was fabricated by a stepwise assembly method and its catalytic performance in Knoevenagel condensation was investigated. The results demonstrated that the magnetic hybrid material exhibited a core-shell structure, with a shell thickness of about 200 nm. Furthermore, it not only exhibited high catalytic activity, but remarkably, it could also be easily recovered magnetically and recycled without obvious loss of catalytic efficiency after three cycles.
  • 加载中
    1. [1]

      [1] M. Opanasenko, A. Dhakshinamoorthy, M. Shamzhy, P. Nachtigall, M. Horacek, H. Garcia, J. Cejka, Catal. Sci. Technol., 2013, 3, 500.

    2. [2]

      [2] X. F. Zhang, E. S. M. Lai, R. Martin-Aranda, K. L. Yeung, Appl. Catal., 2004, 261, 109.

    3. [3]

      [3] S. Dommele, K. P. Jong, J. H. Bitter, Top. Catal., 2009, 52, 1575.

    4. [4]

      [4] R. Wirz, D. Ferri, A. Baiker, Langmuir, 2006, 22, 3698.

    5. [5]

      [5] P. Serra-Crespo, E. V. Ramos-Fernandez, J. Gascon, F. Kapteijn, Chem. Mater., 2011, 23, 2565.

    6. [6]

      [6] Q. L. Zhu, Q. Xu, Chem. Soc. Rev., 2014, 43, 5468.

    7. [7]

      [7] J. Y. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. B. T. Nguyen, J. T. Hupp, Chem. Soc. Rev., 2009, 38, 1450.

    8. [8]

      [8] F. Ke, Y. P. Yuan, L. G. Qiu, Y. H. Shen, A. J. Xie, J. F. Zhu, J. Mater. Chem., 2011, 21, 3843.

    9. [9]

      [9] F. Ke, L. G. Qiu, Y. P. Yuan, F. M. Peng, X. Jiang, A. J. Xie, Y. H. Shen, J. F. Zhu, J. Hazard Mater., 2011, 196, 36.

    10. [10]

      [10] F. Ke, L. G. Qiu, Y. P. Yuan, X. Jiang, J. F. Zhu, J. Mater. Chem., 2012, 22, 9497.

    11. [11]

      [11] J. J. Qian, L. G. Qiu, Y. M. Wan, Y. P. Yuan, A. J. Xie, Y. H. Shen, Dalton. Trans., 2014, 43, 3978.

    12. [12]

      [12] F. Ke, L. G. Qiu, J. F. Zhu, Nanoscale, 2014, 6, 1596.

    13. [13]

      [13] X. F. Li, Y. M. Zhang, M. M. Tian, G. Chu, J. Zhang, S. D. Fan, J. F. Wang, J. Funct. Mater., 2015, 46, 39.

    14. [14]

      [14] Y. Cai, A. R. Kulkarni, Y. G. Huang, D. S. Sholl, K. S. Walton, Cryst. Growth Des., 2014, 14, 6122.

    15. [15]

      [15] K. Peikert, F. Hoffmann, M. Froba, Chem. Commun., 2012, 48, 11196.

    16. [16]

      [16] C. Prestipino, L. Regli, J. G. Vitillo, F. Bonino, A. Damin, C. Lamberti, A. Zecchina, P. L. Solari, K. O. Kongshaug, S. Bordiga, Chem. Mater., 2006, 18, 1337.

    17. [17]

      [17] Q. X. Luo, X. D. Song, M. Ji, S. E. Park, C. Hao, Y. Q. Li, Appl. Catal. A, 2014, 478, 81.

    18. [18]

      [18] A. R. Burgoyne, R. Meijboom, Catal. Lett., 2013, 143, 563.

    19. [19]

      [19] M. M. Tian, Y. M. Zhang, X. F. Li, G. Chu, J. Zhang, S. D. Fan, J. F. Wang, New Chem. Mater., 2015, 43(11), 39.

    20. [20]

      [20] Y. H. Deng, C. H. Deng, D. W. Qi, C. Liu, J. Liu, X. M. Zhang, D. Y. Zhao, Adv. Mater., 2009, 21, 1377.

    21. [21]

      [21] L. T. L. Nguyen, K. K. A. Le, H. X. Truong, N. T. S. Phan, Catal. Sci. Technol., 2012, 2, 521.

    22. [22]

      [22] J. Gascon, U. Aktay, M. D. Hernandez-Alonso, G. P. M. van Klink, F. Kapteijn, J. Catal., 2009, 261, 75.

    23. [23]

      [23] V. N. Panchenko, M. M. Matrosova, J. Jeon, J. W. Jun, M. N. Timofeeva, S. H. Jhung, J. Catal., 2014, 316, 251.

    24. [24]

      [24] H. Mahmoudi, R. Malakooti, React. Kinet. Mech. Catal., 2014, 113, 241.

    25. [25]

      [25] R. Cortese, D. Duca, Phys. Chem. Chem. Phys., 2011, 13, 15995.

    26. [26]

      [26] Y. Yang, H. F. Yao, F. G. Xi, E. Q. Gao, J. Mol. Catal. A, 2014, 390, 198.

    27. [27]

      [27] M. Hartmann, M. Fischer, Microporous. Mesoporous. Mater., 2012, 164, 38.

    28. [28]

      [28] F. X. Llabres i Xamena, F. G. Cirujano, A. Corma, Microporous. Mesoporous. Mater., 2012, 157, 112.

  • 加载中
    1. [1]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    2. [2]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    3. [3]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    4. [4]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    5. [5]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    6. [6]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    7. [7]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    8. [8]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    9. [9]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    10. [10]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    11. [11]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    12. [12]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    13. [13]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    14. [14]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    15. [15]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    16. [16]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    17. [17]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    18. [18]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    19. [19]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    20. [20]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

Metrics
  • PDF Downloads(0)
  • Abstract views(629)
  • HTML views(70)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return