Citation: Shujuan Kang, Qisheng Ma, Weiqun Chen, Guanyi Chen, Yongchun Tang. High-temperature Shilov-type methane conversion reaction: Mechanistic and kinetic studies[J]. Chinese Journal of Catalysis, ;2015, 36(10): 1777-1784. doi: 10.1016/S1872-2067(15)60966-4 shu

High-temperature Shilov-type methane conversion reaction: Mechanistic and kinetic studies

  • Corresponding author: Guanyi Chen,  Yongchun Tang, 
  • Received Date: 20 March 2015
    Available Online: 17 August 2015

    Fund Project: 美国能源部项目(DE-EE0003461) (DE-EE0003461) 国家重点基础研究发展计划(973计划, 2012CB215303). (973计划, 2012CB215303)

  • Traditional Shilov reactions (performed in aqueous solution with a PtCl2 catalyst) for methane conversion suffer from catalyst deactivation at high temperatures (> 100 ℃), therefore only very low conversion rates have been achieved. In this paper, we show that Shilov-type C-H activations are achievable at much higher temperatures (~200 ℃) by addition of concentrated aqueous solutions of Cl- to inhibit Pt catalyst precipitation. Various chloride-based ionic liquids also stabilized the Pt catalyst at mild reaction temperatures (~140 ℃). Under high-pressure conditions (> 25.5 MPa), achieved using a specially designed sealed gold-tube reactor, very high methane conversion rates (> 90%) were obtained; this is attributed to the improved methane solubility in aqueous solution. Deuterium isotope (H/D) exchange between methane and water was used to examine the reaction reactivity and selectivity. Multiply D-substituted products were observed, indicating that multiple C-H activations occurred. A comprehensive network reaction that included all the chain reactions was set up to clarify the reactivities and product selectivities of the methane activation reactions. The reaction network consisted of a series of parallel first-order reactions, which can be described by the Arrhenius equation. The kinetic parameters such as the frequency factor, activation energies, and stoichiometric coefficients were obtained by fitting the experimental data. Because all four C-H bonds in a methane molecule are equivalent, multiple substitutions during methane conversion cannot be avoided. Our studies indicate that mono-substituted and di-substituted methane isotopologue generations have similar activation energies, suggesting that the highest mono-substitution selectivity cannot be greater than 50%.
  • 加载中
    1. [1]

      [1] Shilov A E, Shul'pin G B. Russ Chem Rev, 1987, 56: 442

    2. [2]

      [2] Shilov A E. Activation of Saturated Hydrocarbons by Transition Metal Complexes. Springer, 1984, and references cited therein

    3. [3]

      [3] Shilov A E, Shul'pin G B. Chem Rev, 1997, 97: 2879

    4. [4]

      [4] Goldman A S, Goldberg K I. In: Goldberg K I, Goldman A S eds. ACS Symposium Series 885. Chapter 1. American Chemical Society, 2004. 1

    5. [5]

      [5] Heyduk A F, Zhong H A, Labinger J A, Bercaw J E. In: Goldberg K I, Goldman A S eds. ACS Symposium Series 885. Chapter 15. American Chemical Society, 2004. 250

    6. [6]

      [6] Look J L, Fekl U, Goldberg K I. In: Goldberg K I, Goldman A S eds. ACS Symposium Series 885. Chapter 17. American Chemical Society, 2004. 283

    7. [7]

      [7] Peters J C, Thomas J C, Thomas C M, Betley T A. In: Goldberg K I, Goldman A S eds. ACS Symposium Series 885. Chapter 20. American Chemical Society, 2004. 334

    8. [8]

      [8] Lersch M, Tilset M. Chem Rev, 2005, 105: 2471

    9. [9]

      [9] Vedernikov A N. Curr Org Chem, 2007, 11: 1401

    10. [10]

      [10] Periana R A, Taube D J, Evitt E R, Loffler D G, Wentrcek P R. Voss G, Masuda T. Science, 1993, 259: 340

    11. [11]

      [11] Periana R A, Taube D J, Gamble S, Taube H, Satoh T, Fujii H. Science, 1998, 280: 560

    12. [12]

      [12] Kua J, Xu X, Periana R A, Goddard W A. III. Organometallics, 2002, 21: 511

    13. [13]

      [13] Xu Z, Oxgaard J, Goddard W A III. Organometallics, 2009, 27: 3770

    14. [14]

      [14] Li Z, Tang Y, Cheng J. US Patent 7 615 644. 2009

    15. [15]

      [15] Cheng J H, Li Z W, Haught M, Tang Y C. Chem Commun, 2006: 4617

    16. [16]

      [16] Chen G Y, Kang S J, Ma Q S, Chen W Q, Tang Y C. Magn Reson Chem, 2014, 52: 673

    17. [17]

      [17] Duan Z H, Moller N, Greenberg J, Weare J H. Geochim Cosmochim Acta, 1992, 56:1451

  • 加载中
    1. [1]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    2. [2]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    3. [3]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    4. [4]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    5. [5]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    6. [6]

      Wenwen Zhang Peichao Zhang Conghao Gai Xiaoyun Chai Yan Zou Qingjie Zhao . Unveiling Kinetics at Natural Abundance: 13C NMR Isotope Effect Experiments. University Chemistry, 2025, 40(10): 203-207. doi: 10.12461/PKU.DXHX202411076

    7. [7]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    8. [8]

      Linlin Wu Yonghua Zhou Zhongbei Li Liu Deng Younian Liu Limiao Chen Jianhan Huang . Digital Education Promoting Applied Chemistry Comprehensive Experiments: A Case Study of Catalytic Oxidation of Hydrogen Chloride and Reaction Kinetics. University Chemistry, 2025, 40(9): 273-278. doi: 10.12461/PKU.DXHX202411018

    9. [9]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    10. [10]

      Kangjuan ChengChunxiao LiuYoupeng WangQiu JiangTingting ZhengXu LiChuan Xia . Design of noble metal catalysts and reactors for the electrosynthesis of hydrogen peroxide. Acta Physico-Chimica Sinica, 2025, 41(10): 100112-0. doi: 10.1016/j.actphy.2025.100112

    11. [11]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    12. [12]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    13. [13]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    14. [14]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    15. [15]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    16. [16]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    17. [17]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    18. [18]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    19. [19]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    20. [20]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

Metrics
  • PDF Downloads(1)
  • Abstract views(979)
  • HTML views(149)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return