多壁碳纳米管负载Cu2O和CuI催化剂上芳醛与2-氨基吡啶氧化酰胺化反应:Cu(I)物种的催化作用

H. N. Hareesh K. U. Minchitha N. Nagaraju N. Kathyayini

引用本文: H. N. Hareesh, K. U. Minchitha, N. Nagaraju, N. Kathyayini. 多壁碳纳米管负载Cu2O和CuI催化剂上芳醛与2-氨基吡啶氧化酰胺化反应:Cu(I)物种的催化作用[J]. 催化学报, 2015, 36(11): 1825-1836. doi: 10.1016/S1872-2067(15)60964-0 shu
Citation:  H. N. Hareesh, K. U. Minchitha, N. Nagaraju, N. Kathyayini. Catalytic role of Cu(I) species in Cu2O/CuI supported on MWCNTs in the oxidative amidation of aryl aldehydes with 2-aminopyridines[J]. Chinese Journal of Catalysis, 2015, 36(11): 1825-1836. doi: 10.1016/S1872-2067(15)60964-0 shu

多壁碳纳米管负载Cu2O和CuI催化剂上芳醛与2-氨基吡啶氧化酰胺化反应:Cu(I)物种的催化作用

    通讯作者: N. Kathyayini. 电话: +91-98-86506387; 传真: +91-80-27577211; 电子信箱: nkathyayini45@gmail.com
摘要: 采用浸渍法制备了多壁碳纳米管(MWCNT)负载的Cu2O和CuI催化剂, 并运用粉末X射线衍射、红外光谱、扫描电镜-能量散射谱、透射电镜和NH3程序升温脱附等技术对催化剂进行了表征. 结果表明, 催化剂中沉积的Cu2O和CuI分别以立方相和γ相存在于MWCNT上, 且表现出由弱到强的拉电子(Lewis酸)性能. 将催化剂用于催化芳醛与2-氨基吡啶氧化酰胺化反应合成N-(吡啶-2-基)苯酰胺类化合物, 产物选择性为100%, 收率为50%-95%. CuI/MWCNT催化剂上产物分离收率性能好于Cu2O/MWCNT, 但后者的循环使用性能更好. 与共价的CuI相比, 离子化的Cu2O与极性的酸活化的MWCNT间具有更适宜的相互作用, 这种不同的相互作用可显著影响2-氨基吡啶的氨基对芳醛羰基的亲核进攻速率.

English

    1. [1] Dhakshinamoorthy A, Opanasenko M, Cejka J, Garcia H. Catal Sci Technol, 2013, 3: 2509[1] Dhakshinamoorthy A, Opanasenko M, Cejka J, Garcia H. Catal Sci Technol, 2013, 3: 2509

    2. [2] Climent M J, Corma A, Iborra S. Chem Rev, 2011, 111: 1072[2] Climent M J, Corma A, Iborra S. Chem Rev, 2011, 111: 1072

    3. [3] Guibal E. Progr Polym Sci, 2005, 30: 71[3] Guibal E. Progr Polym Sci, 2005, 30: 71

    4. [4] Blaser H U. Catal Today, 2000, 60: 161[4] Blaser H U. Catal Today, 2000, 60: 161

    5. [5] Julkapli N M, Bagheri S. Int J Hydrogen Energy, 2015, 40: 948[5] Julkapli N M, Bagheri S. Int J Hydrogen Energy, 2015, 40: 948

    6. [6] Thimmaraju N, Mohamed Shamshuddin S Z, Pratap S R, Venkatesh. J Mol Catal A, 2014, 391: 55[6] Thimmaraju N, Mohamed Shamshuddin S Z, Pratap S R, Venkatesh. J Mol Catal A, 2014, 391: 55

    7. [7] Eatemadi A, Daraee H, Karimkhanloo H, Zarghami N, Abasi M, Kouhi M, Akbarzadeh A, Hanifehpour Y, Joo S W. Nanoscale Res Lett, 2014, 9: 393[7] Eatemadi A, Daraee H, Karimkhanloo H, Zarghami N, Abasi M, Kouhi M, Akbarzadeh A, Hanifehpour Y, Joo S W. Nanoscale Res Lett, 2014, 9: 393

    8. [8] Eder D. Chem Rev, 2010, 110: 1348[8] Eder D. Chem Rev, 2010, 110: 1348

    9. [9] Oosthuizen R S, Nyamori V O. Platinum Metals Rev, 2011, 55: 154[9] Oosthuizen R S, Nyamori V O. Platinum Metals Rev, 2011, 55: 154

    10. [10] Rummeli M H, Bachmatiuk A, Borrnert F, Schaffel F, Ibrahim I, Cendrowski K, Simha-Martynkova G, Placha D, Borowiak-Palen E, Cuniberti G, Buchner B. Nanoscale Res Lett, 2011, 6: 303[10] Rummeli M H, Bachmatiuk A, Borrnert F, Schaffel F, Ibrahim I, Cendrowski K, Simha-Martynkova G, Placha D, Borowiak-Palen E, Cuniberti G, Buchner B. Nanoscale Res Lett, 2011, 6: 303

    11. [11] Solhy A, Machado B F, Beausoleil J, Kihn Y, Goncalves F, Pereira M F R, Orfao J J M, Figueiredo J L, Faria J L, Serp P. Carbon, 2008, 46: 1194[11] Solhy A, Machado B F, Beausoleil J, Kihn Y, Goncalves F, Pereira M F R, Orfao J J M, Figueiredo J L, Faria J L, Serp P. Carbon, 2008, 46: 1194

    12. [12] Jahjah M, Kihn Y, Teuma E, Gomez M. J Mol Catal A, 2010, 332: 106[12] Jahjah M, Kihn Y, Teuma E, Gomez M. J Mol Catal A, 2010, 332: 106

    13. [13] Liu Z, Li Z L, Wang F, Liu J J, Ji J, Park K C, Endo M. Mater Res Bull, 2012, 47: 338[13] Liu Z, Li Z L, Wang F, Liu J J, Ji J, Park K C, Endo M. Mater Res Bull, 2012, 47: 338

    14. [14] Terada Y, Ieda N, Komura K, Sugi Y. Synthesis, 2008: 2318[14] Terada Y, Ieda N, Komura K, Sugi Y. Synthesis, 2008: 2318

    15. [15] Valeur E, Bradley M. Chem Soc Rev, 2009, 38: 606[15] Valeur E, Bradley M. Chem Soc Rev, 2009, 38: 606

    16. [16] Surasani R, Kalita D, Dhanunjaya Rao A V, Chandrasekhar K B. Beilstein J Org Chem, 2012, 8: 2004[16] Surasani R, Kalita D, Dhanunjaya Rao A V, Chandrasekhar K B. Beilstein J Org Chem, 2012, 8: 2004

    17. [17] Kathiravan S, Ghosh S, Hogarth G, Nicholls I A. Chem Commun, 2015, 51: 4834[17] Kathiravan S, Ghosh S, Hogarth G, Nicholls I A. Chem Commun, 2015, 51: 4834

    18. [18] Han C, Lee J P, Lobkovsky E, Porco J A. J Am Chem Soc, 2005, 127: 10039[18] Han C, Lee J P, Lobkovsky E, Porco J A. J Am Chem Soc, 2005, 127: 10039

    19. [19] Surry D S, Buchwald S L. Chem Sci, 2010, 1: 13[19] Surry D S, Buchwald S L. Chem Sci, 2010, 1: 13

    20. [20] Yoo W J, Li C J. J Am Chem Soc, 2006, 128: 13064[20] Yoo W J, Li C J. J Am Chem Soc, 2006, 128: 13064

    21. [21] Ghosh S C, Ngiam J S Y, Seayad A M, Tuan D T, Chai C L L, Chen A. J Org Chem, 2012, 77: 8007[21] Ghosh S C, Ngiam J S Y, Seayad A M, Tuan D T, Chai C L L, Chen A. J Org Chem, 2012, 77: 8007

    22. [22] Yang S Z, Yan H, Ren X Y, Shi X K, Li J, Wang Y L, Huang G S. Tetrahedron, 2013, 69: 6431[22] Yang S Z, Yan H, Ren X Y, Shi X K, Li J, Wang Y L, Huang G S. Tetrahedron, 2013, 69: 6431

    23. [23] Diwakar R, Singh R K. Ind J Chem B, 2011, 50B: 931[23] Diwakar R, Singh R K. Ind J Chem B, 2011, 50B: 931

    24. [24] Zimmer C, Hafner M, Zender M, Ammann D, Hartmann R W, Vock C A. Bioorg Med Chem Lett, 2011, 21: 186[24] Zimmer C, Hafner M, Zender M, Ammann D, Hartmann R W, Vock C A. Bioorg Med Chem Lett, 2011, 21: 186

    25. [25] Martis P, Fonseca A, Mekhalif Z, Delhalle J. J Nanopart Res, 2010, 12: 439[25] Martis P, Fonseca A, Mekhalif Z, Delhalle J. J Nanopart Res, 2010, 12: 439

    26. [26] Zhang X J, Wang G F, Zhang W, Wei Y, Fang B. Biosens Bioelectron, 2009, 24: 3395[26] Zhang X J, Wang G F, Zhang W, Wei Y, Fang B. Biosens Bioelectron, 2009, 24: 3395

    27. [27] Chen H L, Chiang T H, Wu M C. J Surf Eng Mater Adv Technol, 2012, 2: 278[27] Chen H L, Chiang T H, Wu M C. J Surf Eng Mater Adv Technol, 2012, 2: 278

    28. [28] Johan M R, Kok S W, Hawari N, Aznan N A K. Int J Electrochem Sci, 2012, 7: 4942[28] Johan M R, Kok S W, Hawari N, Aznan N A K. Int J Electrochem Sci, 2012, 7: 4942

    29. [29] Noorizadeh H, Zeraatkish Y. Int J Nano Dimens, 2015, 6: 211[29] Noorizadeh H, Zeraatkish Y. Int J Nano Dimens, 2015, 6: 211

    30. [30] Scheibe B, Boroiak-Palen E, Kalenczuk R J. Mater Charact, 2010, 61: 185[30] Scheibe B, Boroiak-Palen E, Kalenczuk R J. Mater Charact, 2010, 61: 185

    31. [31] Khanderi J, Contiu C, Engstler J, Hoffmann R C, Schneider J J, Drochner A, Vogel H. Nanoscale, 2011, 3: 1102[31] Khanderi J, Contiu C, Engstler J, Hoffmann R C, Schneider J J, Drochner A, Vogel H. Nanoscale, 2011, 3: 1102

    32. [32] Prakash T. Adv Mater Lett, 2011, 2: 131[32] Prakash T. Adv Mater Lett, 2011, 2: 131

    33. [33] Rekha M, Hareesh H N, Kathyayini N, Nagaraju N. Curr Catal, 2014, 3: 88[33] Rekha M, Hareesh H N, Kathyayini N, Nagaraju N. Curr Catal, 2014, 3: 88

    34. [34] Patel O P S, Anand D, Maurya R K, Yadav P P. Green Chem, 2015, 17: 3728[34] Patel O P S, Anand D, Maurya R K, Yadav P P. Green Chem, 2015, 17: 3728

  • 加载中
计量
  • PDF下载量:  3
  • 文章访问数:  776
  • HTML全文浏览量:  86
文章相关
  • 收稿日期:  2015-06-23
  • 网络出版日期:  2015-08-12
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章